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J. A. Holt, Leo Michelotti, T. Satogata 
Fermi National Accelerator Laboratoryt 
P. 0. Box 500, Batavia, IL 90510, USA 

Abstract 

Work is in progress on an integrated software toolkit for lin­
ear and nonlinear accelerator design, analysis, and simula­
tion. As a first application, "beamline" and "MXYZPTLK" 
(differential algebra} class libraries, were used with an X 
Windows graphics library to build an user-friendly, inter­
active phase space tracker which, additionally, finds periodic 
orbits. This program was used to analyse a theoretical lat­
tice which contains octupoles and decapoles to find the 20th 
order, stable and unstable periodic orbits and to explore the 
local phase space structure. 

1 futroduction 

There are a number of good general-purpose accelerator 
tracking codes in wide use such as SYNCH [1], MAD 
[2], or TEAPOT [3]. Each of these programs has an in­
put format or language in which the user formulates the 
problem to be solved. This language is different from 
the language the code is written in. Frequently the ac­
celerator physicist wants to solve a problem which does 
not fit within the constraints of the input language. The 
physicist must then duplicate the basic lattice handling 
functions which all codes must have as well as the special 
functions which solve the problem at hand. Also some 
problems can be solved more quickly when the input can 
be changed interactively and both the intermediate and 
final results be seen graphically. Most codes at present 
are a batch type operation; an input file is edited, the 
program is run and the final results are output. Explor­
ing phase space to search for a separatrix for example, 
in this manner is a Very time-consuming process. 

We are developing a set of tools in which the input 
language is the same as the programming language. We 
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have implemented our code in C++ because of the ease 
in creating new types that behave in every respect like 
fully functional variables of the language. We have inte­
grated several types of class libraries to form a custom 
application to ''solve" a particular problem. Different 
authors worked on different parts of the libraries. Be­
cause everything was encapsulated in objects, one au­
thor did not have to know any details of the objects 
created by another; only the interface to that object 
had to be known. 

The following sections briefly describe the class li­
braries used to build the application. Some have been 
explained in greater detail elsewhere. We have used 
MXYZPTLK which is a set of DA classes which im­
plement differential algebra, beamline which is a class 
used to simulate beamlines and rings, and a collection 
of X Window/Motif classes which are used for the user 
graphical interface. 

2 Differential Algebra Class Library 

The class library MXYZPTLK [4] is an implementation 
of differential algebra in C++ . There are two classes 
DA and DAVector which are derived from doubly linked 
lists. Each link in a list contains the "index array" for 
a particular non-zero derivative and its weighted value. 
When a DA variable is first declared, it is a list with 
no links. The links are created dynamically as calcula­
tions proceed. Full use is made of the function overload 
capability of C++ . Ail arithmetic operations includ­
ing mixed-mode operations are handled automatically. 
No special function calls or precompiling is necessary. 
In addition, each DA variable keeps track of its own 
attributes, such as accuracy and reference point. For 
example, consider the simple function z(m) defined by 
the equation 

z(m) = cos(m · z(m)) ( 1) 



Simple recursion can be used to construct x( m) for min 
the approximate range m E ( -1.2, 1.2), determined by 
the condition I msin(m · x(m)) I< 1. The same recur-· 
sian, applied to DA variables, provides the derivatives 
as well. The C++ code fragment [5] 

DA m, x; 
m.setVariable( 0.5, 0); 

x =cos( m * 0.9 ); 
for( i = 0; i < 15; i++ 

x.peekAt(); 
x =cos( m * x ); 

will evaluate derivatives of x(m) at m = 0.5 (x(0.5) = 
0.900376 ... ). Note that C++ automatically handles the 
mixed mode arithmetic in the third line. The .peekAt 
member function prints the desired derivatives. 

3 Beamline Class Library 

An accelerator is a collection of objects connected to­
gether to form beamlines, a structure modelled very nat­
urally by C++ . The class beamline[6] is derived from 
two base classes; a doubly linked list and bmlnElmnt, 
which holds information common to all beamline ele­
ments, such as geometry. Because beamline is derived 
from bmluElmnt it is easy to insert one berunline into 
another, thereby building complicated models hierarchi­
cally. As a trivial example, the following C++ code 
fragment is one way of constructing a five-cell FODO 
lattice. 

double length = 1.0, focalLength = 1. 0; 
drift 0( length ) ; 
thinQuadrupole F( focalLength ); 
thinQuadrupole D( -focalLength ); 

beamline A ( F ) ; 
A.append ( 0 ) ; 

A.append ( D ) ; 

A.append ( 0 ) ; 

beamline B; 
for( inti= 0; i < 5; i++) B.append( A); 

The first lines declare variables 0, F, D as the basic 
beamline elements. This is followed by a series of .ap­
pend statements in which the elements are inserted into 
a cell, called A. The loop at the end contructs a beam­
line B consisting of five cells of A. In a beamline con­
structed in this manner, adjustment ofF will adjust F 
everywhere. 

Once declared, beainliue objects can be used to do 
tracking, evaluate lattice functions, construct polyno-

mial maps, and so forth. For example, the following code 
fragment belongs to a simple program which compares 
element by element tracking of a nonlinear beamline, 
called E778, with polynomial map evaluation. 

beamline 
proton 
double 
DA 

E778; 
p; DAproton pd; 
w [6] , y [6] , z [6] , zero [6] ; 
zd[6]; 

II Construct polynomial map 
pd.setState( zero); 
E778.propagate( pd ) ; 
pd.getState( zd ) ; 
II Do tracking 
for ( int i = 0; i < 50000; i++ ) { 
II --with the map 

for ( int j = 0; j < 6; j ++ ) 
y[j] = zd[j] .multiEval( z ); 

for ( j = 0; j < 6; j++ ) z [j] = y [j]; 
II-- element by element 

E778.propagate( p ); 
p.getState( w ); 

} 

First, a polynomial map is constructed by propagating 
a DAproton object around the beamline and storing its 
resultant state in an array of DA variables. Within the 
loop, the .multiEval method is used to evaluate this 
map for comparison with element by element tracking, 
done by propagating a proton object around E778. 

4 Graphic Class Library 

Using Young's widgets [7] as foundation, we have imple­
mented an X Window /Motif graphic interface in C++ . 
Classes such as filese1ection, menubars, command but­
tons, popup windows and text input have been imple­
mented making it easy for the user to customize the 
interface. The most important class is the phaseSpace 
class in which 4D phase space variables amplitude and 
phase (this can be changed to x-x', y-y' easily) are plot­
ted. The user can click anywhere in the phase space 
region to set the initial conditions for tracking. This 
can be done while propagating through a beamline or 
map. Searches for a separatrix for example can be done 
very quickly. 

The graphics interface communicates with the beam­
line class through a class called genericMap. This 
class has methods such as start and stop propagating, 
setting or retrieving the tunes, and finding periodic or­
bits. The user can change maps or beamlines or vari-
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Figure 1: 2D Projection of 4D Phase Space 

ables to be plotted without touching the graphics inter­
face. It is also easy to add a new method to this class 
and connect this method to a command button or menu 
item in the interface. 

5 A Simple Application 

Figure 1 shows a simple application which was used to 
look for the periodic orbits of a theoretical lattice [8], the 
main elements of which are three octupoles separated by 
sixty degree phase advances and a decapole separated by 
a forty-five degree phase advance. A stable and an un­
stable period twenty orbit are displayed, along with the 
corresponding separatrix. One of the tori surrounding 
the stable orbit is also drawn. 

Previous work by one of the authors [9] used coupled 
three-dimensional projections to explore four-dimensional 
phase space. Figure 2 shows the same lattice and pe­
riodic orbits using AESOP, a graphics shell originally 
written for the Evans and Sutherland PS390 terminal. 
AESOP, and the "GrafXPad" classes on which it is based, 
are being rewritten using Xl1R5 Phigs so as to make 
them available on any X workstation. 

References 

[1] A. A. Garren, A. S. Kenney, E. D. Courant, 
A. D. Russell, and M. J. Syphers. SYNCH: A Com­
puter System for Synchrotron Design and Orbit Anal­
ysis. Users Guide. Los Alamos Accelerator Code 
Group. Los Alamos National Laboratory. 

[2] Hans Grote and F. Christoph Iselin. The MAD Pro­
gram (Methodical Accelerator Design). User's Refer­
ence Manual. European Organization for Nuclear Re­
search, Geneva, Switzerland. CERN/SL/90-13. 

Figure 2: 3D Projection of 4D Phase Space 

[3] L. Schachinger and R. Talman, TEAPOT: A Thin 
Element Accelerator Program for Optics and Track­
ing, Superconducting Super Collider Laboratory, 
SSC-52 December 1985. 

[4] L. Michelotti. MXYZPTLK: A practical users­
friendly C++ implementation of differential algebra: 
User's Guide. Fermi Note FN-535, Fermilab, Jan­
uary 31, 1990; MXYZPTLK: A C++ Hacker's Im­
plementation of Automatic Differentiation. In Auto­
matic Differentiation of Algorithms: Theory, Imple­
mentation, and Application. SIAM, Philadelphia, PA. 
1991. 

[5] L. Michelotti, A Note on the Automated Differenti­
ation of Implicit Functions. Fermilab TM-1742 (June 
1991) 

[6] L. Michelotti, MXYZPTLK and Beamline: C++ 
Objects for Beam Physics. In Advanced Beam Dy­
namics Workshop on Effects of Errors in A ccelera­
tors, their Diagnosis and Correction. (held in Cor­
pus Christi, Texas, October 3-8, 1991) Published by 
American Institute of Physics, as Conference Pro­
ceedings No. 255. 1992. 

[7] Douglas A. Young, Object-Orientated Programing 
with C++ and OSF/Motif, Prentice Hall, 1992. 

[8] T. Satogata and S. Peggs, Is Beta Modulation More 
or Less than Tune Modulation? IEEE Particle Accel­
erator Conference 1989, page 476. 

[9] L. Michelotti, Exploratory Orbit Analysis. In Pro­
ceedings of the Jgsg IEEE Particle Accelerator Con­
ference. 
March 20-23, 1989, Chicago, IL. Vol.2, pp.l274-1276. 


