
,

• A Fermi National Accelerator Laboratory

FERMILAB-Conf-921219

Accelerator Physics Analysis with an Integrated Toolkit

J.A. Holt, Leo Michelotti, T. Satogata

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

August 1992

Presented at the XVth International Conference on High Energy Accelerators,
Hamburg, Germany, July 20-24, 1992

0 Operated by Universities Research Association Inc. under Contract No. DE·AC02·76CH03000 with the United States Depertment of Energy

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof.

•

•

•

Accelerator Physics Analysis with an Integrated Toolkit

J. A. Holt, Leo Michelotti, T. Satogata
Fermi National Accelerator Laboratoryt
P. 0. Box 500, Batavia, IL 90510, USA

Abstract

Work is in progress on an integrated software toolkit for lin­
ear and nonlinear accelerator design, analysis, and simula­
tion. As a first application, "beamline" and "MXYZPTLK"
(differential algebra} class libraries, were used with an X
Windows graphics library to build an user-friendly, inter­
active phase space tracker which, additionally, finds periodic
orbits. This program was used to analyse a theoretical lat­
tice which contains octupoles and decapoles to find the 20th
order, stable and unstable periodic orbits and to explore the
local phase space structure.

1 futroduction

There are a number of good general-purpose accelerator
tracking codes in wide use such as SYNCH [1], MAD
[2], or TEAPOT [3]. Each of these programs has an in­
put format or language in which the user formulates the
problem to be solved. This language is different from
the language the code is written in. Frequently the ac­
celerator physicist wants to solve a problem which does
not fit within the constraints of the input language. The
physicist must then duplicate the basic lattice handling
functions which all codes must have as well as the special
functions which solve the problem at hand. Also some
problems can be solved more quickly when the input can
be changed interactively and both the intermediate and
final results be seen graphically. Most codes at present
are a batch type operation; an input file is edited, the
program is run and the final results are output. Explor­
ing phase space to search for a separatrix for example,
in this manner is a Very time-consuming process.

We are developing a set of tools in which the input
language is the same as the programming language. We

t Operated by the Universities Research Association,Inc,
under contract with the U.S. Department of Energy

have implemented our code in C++ because of the ease
in creating new types that behave in every respect like
fully functional variables of the language. We have inte­
grated several types of class libraries to form a custom
application to ''solve" a particular problem. Different
authors worked on different parts of the libraries. Be­
cause everything was encapsulated in objects, one au­
thor did not have to know any details of the objects
created by another; only the interface to that object
had to be known.

The following sections briefly describe the class li­
braries used to build the application. Some have been
explained in greater detail elsewhere. We have used
MXYZPTLK which is a set of DA classes which im­
plement differential algebra, beamline which is a class
used to simulate beamlines and rings, and a collection
of X Window/Motif classes which are used for the user
graphical interface.

2 Differential Algebra Class Library

The class library MXYZPTLK [4] is an implementation
of differential algebra in C++ . There are two classes
DA and DAVector which are derived from doubly linked
lists. Each link in a list contains the "index array" for
a particular non-zero derivative and its weighted value.
When a DA variable is first declared, it is a list with
no links. The links are created dynamically as calcula­
tions proceed. Full use is made of the function overload
capability of C++ . Ail arithmetic operations includ­
ing mixed-mode operations are handled automatically.
No special function calls or precompiling is necessary.
In addition, each DA variable keeps track of its own
attributes, such as accuracy and reference point. For
example, consider the simple function z(m) defined by
the equation

z(m) = cos(m · z(m)) (1)

Simple recursion can be used to construct x(m) for min
the approximate range m E (-1.2, 1.2), determined by
the condition I msin(m · x(m)) I< 1. The same recur-·
sian, applied to DA variables, provides the derivatives
as well. The C++ code fragment [5]

DA m, x;
m.setVariable(0.5, 0);

x =cos(m * 0.9);
for(i = 0; i < 15; i++

x.peekAt();
x =cos(m * x);

will evaluate derivatives of x(m) at m = 0.5 (x(0.5) =
0.900376 ...). Note that C++ automatically handles the
mixed mode arithmetic in the third line. The .peekAt
member function prints the desired derivatives.

3 Beamline Class Library

An accelerator is a collection of objects connected to­
gether to form beamlines, a structure modelled very nat­
urally by C++ . The class beamline[6] is derived from
two base classes; a doubly linked list and bmlnElmnt,
which holds information common to all beamline ele­
ments, such as geometry. Because beamline is derived
from bmluElmnt it is easy to insert one berunline into
another, thereby building complicated models hierarchi­
cally. As a trivial example, the following C++ code
fragment is one way of constructing a five-cell FODO
lattice.

double length = 1.0, focalLength = 1. 0;
drift 0(length) ;
thinQuadrupole F(focalLength);
thinQuadrupole D(-focalLength);

beamline A (F) ;
A.append (0) ;

A.append (D) ;

A.append (0) ;

beamline B;
for(inti= 0; i < 5; i++) B.append(A);

The first lines declare variables 0, F, D as the basic
beamline elements. This is followed by a series of .ap­
pend statements in which the elements are inserted into
a cell, called A. The loop at the end contructs a beam­
line B consisting of five cells of A. In a beamline con­
structed in this manner, adjustment ofF will adjust F
everywhere.

Once declared, beainliue objects can be used to do
tracking, evaluate lattice functions, construct polyno-

mial maps, and so forth. For example, the following code
fragment belongs to a simple program which compares
element by element tracking of a nonlinear beamline,
called E778, with polynomial map evaluation.

beamline
proton
double
DA

E778;
p; DAproton pd;
w [6] , y [6] , z [6] , zero [6] ;
zd[6];

II Construct polynomial map
pd.setState(zero);
E778.propagate(pd) ;
pd.getState(zd) ;
II Do tracking
for (int i = 0; i < 50000; i++) {
II --with the map

for (int j = 0; j < 6; j ++)
y[j] = zd[j] .multiEval(z);

for (j = 0; j < 6; j++) z [j] = y [j];
II-- element by element

E778.propagate(p);
p.getState(w);

}

First, a polynomial map is constructed by propagating
a DAproton object around the beamline and storing its
resultant state in an array of DA variables. Within the
loop, the .multiEval method is used to evaluate this
map for comparison with element by element tracking,
done by propagating a proton object around E778.

4 Graphic Class Library

Using Young's widgets [7] as foundation, we have imple­
mented an X Window /Motif graphic interface in C++ .
Classes such as filese1ection, menubars, command but­
tons, popup windows and text input have been imple­
mented making it easy for the user to customize the
interface. The most important class is the phaseSpace
class in which 4D phase space variables amplitude and
phase (this can be changed to x-x', y-y' easily) are plot­
ted. The user can click anywhere in the phase space
region to set the initial conditions for tracking. This
can be done while propagating through a beamline or
map. Searches for a separatrix for example can be done
very quickly.

The graphics interface communicates with the beam­
line class through a class called genericMap. This
class has methods such as start and stop propagating,
setting or retrieving the tunes, and finding periodic or­
bits. The user can change maps or beamlines or vari-

;

~-- --·

Figure 1: 2D Projection of 4D Phase Space

ables to be plotted without touching the graphics inter­
face. It is also easy to add a new method to this class
and connect this method to a command button or menu
item in the interface.

5 A Simple Application

Figure 1 shows a simple application which was used to
look for the periodic orbits of a theoretical lattice [8], the
main elements of which are three octupoles separated by
sixty degree phase advances and a decapole separated by
a forty-five degree phase advance. A stable and an un­
stable period twenty orbit are displayed, along with the
corresponding separatrix. One of the tori surrounding
the stable orbit is also drawn.

Previous work by one of the authors [9] used coupled
three-dimensional projections to explore four-dimensional
phase space. Figure 2 shows the same lattice and pe­
riodic orbits using AESOP, a graphics shell originally
written for the Evans and Sutherland PS390 terminal.
AESOP, and the "GrafXPad" classes on which it is based,
are being rewritten using Xl1R5 Phigs so as to make
them available on any X workstation.

References

[1] A. A. Garren, A. S. Kenney, E. D. Courant,
A. D. Russell, and M. J. Syphers. SYNCH: A Com­
puter System for Synchrotron Design and Orbit Anal­
ysis. Users Guide. Los Alamos Accelerator Code
Group. Los Alamos National Laboratory.

[2] Hans Grote and F. Christoph Iselin. The MAD Pro­
gram (Methodical Accelerator Design). User's Refer­
ence Manual. European Organization for Nuclear Re­
search, Geneva, Switzerland. CERN/SL/90-13.

Figure 2: 3D Projection of 4D Phase Space

[3] L. Schachinger and R. Talman, TEAPOT: A Thin
Element Accelerator Program for Optics and Track­
ing, Superconducting Super Collider Laboratory,
SSC-52 December 1985.

[4] L. Michelotti. MXYZPTLK: A practical users­
friendly C++ implementation of differential algebra:
User's Guide. Fermi Note FN-535, Fermilab, Jan­
uary 31, 1990; MXYZPTLK: A C++ Hacker's Im­
plementation of Automatic Differentiation. In Auto­
matic Differentiation of Algorithms: Theory, Imple­
mentation, and Application. SIAM, Philadelphia, PA.
1991.

[5] L. Michelotti, A Note on the Automated Differenti­
ation of Implicit Functions. Fermilab TM-1742 (June
1991)

[6] L. Michelotti, MXYZPTLK and Beamline: C++
Objects for Beam Physics. In Advanced Beam Dy­
namics Workshop on Effects of Errors in A ccelera­
tors, their Diagnosis and Correction. (held in Cor­
pus Christi, Texas, October 3-8, 1991) Published by
American Institute of Physics, as Conference Pro­
ceedings No. 255. 1992.

[7] Douglas A. Young, Object-Orientated Programing
with C++ and OSF/Motif, Prentice Hall, 1992.

[8] T. Satogata and S. Peggs, Is Beta Modulation More
or Less than Tune Modulation? IEEE Particle Accel­
erator Conference 1989, page 476.

[9] L. Michelotti, Exploratory Orbit Analysis. In Pro­
ceedings of the Jgsg IEEE Particle Accelerator Con­
ference.
March 20-23, 1989, Chicago, IL. Vol.2, pp.l274-1276.

