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Abstract

The traditional formula for calculating luminosity assumes an
uncoupled lattice and makes use of one-degree-of-freedom lat-
tice functions,βH andβV , for relating transverse beam widths to
emittances. Strong coupling requires changing this approach. It
is simplest to employ directly the linear normal form coordinates
of the one turn map. An equilibrium distribution in phase space is
expressed as a function of the Jacobian’s eigenvectors and beam
size parameters or emittances. Using the equilibrium distribu-
tions an expression for the luminosity was derived and applied
to the Tevatron lattice, which was coupled due to a quadrupole
roll.

I. Introduction

The Tevatron lattice for collider operations at Fermilab is de-
signed to give the same lattice functions and luminosity at the two
interaction regions CDF and D0. During the first part of Collider
Run IB however, the ratio of measured luminosities at CDF and
D0 was abouťCDF/ˇD0 = 0.75. In addition to a lower luminos-
ity, the longitudinal distribution of luminosity at CDF was not
symmetric as expected. These discrepancies were reduced when
a low beta quadrupole near the CDF interaction region was found
to be rolled by 8 mrad and subsequently re-aligned. After the re-
alignment of the low beta quad, the ratio of measured luminosity
changed to abouťCDF/ˇD0 = 1.1 and luminosity distribution at
CDF also became symmetric as expected.

Since the effect of a rolled quadrupole on luminosity cannot
be explained by using the standardβ function treatment of un-
coupled machines we develop the formulation for calculating
luminosity in a coupled machine. Others have developed a set
of general lattice functions which can be used to describe the lat-
tice of coupled machines [2] but we choose instead to use linear
normal form analysis. We present the development of an ex-
pression for the luminosity in a coupled machine based on linear
normal forms and give results of luminosity calculations based
on models of the Tevatron with and without the rolled quad.

II. Theory

In this section we will lay out the expressions used to calculate
luminosity in the presence of strong coupling.

A. Linear normal form coordinates

As usual, we write the state of a particle as an array,
uT = (x, y, c1t; x′, y′, δ), by referring a coordinate chart to a
local “design” fiducial curve in phase space, normally a segment
of the closed orbit.u contains the coordinates of a particle as it
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Figure. 1. Commutative diagram showing the action of a one-
turn matrix in the normal form representation.

crosses a plane transverse to this local fiducial curve. The coordi-
nates,x, y, x′, andy′ are the transverse position and momentum∗

of a particle, relative to the curve, at the instant the particle crosses
the plane whileδ = 1p/ p̄ is its momentum offset. The coordi-
nate1t is the time, relative to the reference time, at which the
plane is crossed, so that particles with1t > 0 arrive late.

Let ˘(u; s) be the one-turn map at the point marked with ar-
clength coordinates. That is, in one revolution starting froms,
u 7→ ˘(u; s). We are interested in the linear part of˘ obtained by
taking the Jacobian:M(s) = (∂˘/∂u)u=0, andu 7→ M(s) · u, in
linear approximation. LetB(s) be the matrix whose columns are
eigenvectors ofM(s), so that,

M(s) · B(s) = B(s) · 3 , (1)

where3 = diag(e±i 2πνk). The conversion to linear normal form
(Weyl) coordinates,a, is given by

u = B(s) · a .

These are complex coordinates, and from the commutative
diagram (Fig. 1) based on Eq.(1), we see that in one turn,
ak 7→ 3kkak = exp(±i 2πνk) ak. Thus, each|ak| is an invariant,
andwith proper normalization,such as either auxiliary condition,

−i BT (s) J B(s) J = 1 , or detB = 1 ,

∗Actually, x′ = px/ p̄ andy′ = py/ p̄, where p̄ is the reference momentum.
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these magnitudes are easily related both to Hamiltonian action
coordinates,Ik, and to physical “emittances” of the particle,εk =
2π Ik = 2π|ak|2.

We want to calculate the state covariance matrix,

+(s) ≡ 〈u uT 〉 = B(s) · 〈a a†〉 · B†(s) ,

of a stationary, equilibrium distribution. With this condi-
tion, the angle variables must be uniformly distributed, so that
〈aka∗

m〉 = δkmIk, and

+i j (s) = 〈ui u j 〉 = 1

2π

∑
k

Bik(s)B∗
jk(s)〈εk〉 . (2)

Coefficients of the〈εk〉 in this expression are whatshould be
meant by “lattice functions” in a coupled machine. They are the
numbers which relate invariant emittances to observable proper-
ties: the transverse widths of bunch distributions.

B. Luminosity integrals

We now use+(s) to evaluate luminosity in the presence of cou-
pling. The general expression for the luminosity of two bunches
colliding head on with velocityv = βc is given by the overlap
integral [1],

ˇ = 2βc frev

∫ ∫
f1(x, y, z; t) f2(x, y, z; t) dV dt (3)

where frev is the revolution frequency, andf1(x, y, z; t) and
f2(x, y, z; t) are the volume density distributions of the two col-
liding bunches.

To simplify Eq.(3) we assume a Gaussian for the equilibrium
distribution inu phase space,

ρs(u; s) = N
√

2π
3
(det+(s))

1
2

e− 1
2 uT ·+−1(s)·u (4)

whereN is the number of particles in a bunch, and+(s) is the
covariance matrix defined in Eq.(2).

To find the volume density distributionf1(x, y, z; t) we first
need to convert Eq.(4) from thes-representation to the time or
t-representation. What we are interested in is the position of a
particle at a given instant of time. However thes-representation
describes the state of a particle as it crosses the transverse plane
at positions. Therefore we need to “propagate” the particle away
from the local transverse plane. In a drift space this “propaga-
tion” is simple since particles travel in straight lines. Without
giving the details, the resulting volume density distribution is

f1(x, y, z; t) = N1√
2π

3
(detC

1
)

1
2

e− 1
2 ζ T

1
·C−1

1
·ζ

1. (5)

In this expressionζ T
1

= (x, y, βct − z) and C
1

is the 3× 3
matrix composed of the elements of the position sector of+,

– the matrix,C, obtained by projecting out the momentum and
energy components – describes the beam footprint in the local
fiducial chart, that is, in local transverse coordinates.

Figure. 2. Astigmatism in the vicinity of B0 resulting from a
9 mrad roll of a low beta quad.

The integrals overx, y, andt in Eq.(3) can be done analytically
and the luminosity reduced to an integral overz. First define

d = third column of(C−1
1

− C−1
2

)/

√
[C−1

1
+ C−1

2
]33

D = (C−1
1

+ C−1
2

− d · dT )−1 , 62
z = [D]33.

Then the expression for the luminosity becomes

ˇ = 2 frev N1N2√
2π

3

∫ (detC−1
1

· C−1
2

· D)
1
2

6z

√
[C−1

1
+ C−1

2
]33

e
− (z−z0)2

262
z dz. (6)

whereD, C
1
, andC

2
are all functions ofz. The emittances,εk,

are determined by measuring the beam profile at three different
locations in the acceleratorsk, k = 1,2,3. From our lattice
model we haveB(sk) and from the measurements we have a
component of+(sk). Thus we have three equations of the form
given in Eq.(2) and can calculate theεk.

III. Calculations and Measurements
A. Astigmatic focus

A first application of Eq.(2) to the vicinity of B0 is shown
in Figure 2(a). For simplicity, only the transverse dimen-
sions have been taken into account, and we assume the val-
ues〈ε1〉 = 〈ε2〉 = 30π mm-mr/βγ for the transverse expected
emittances appearing in Eq.(2). (These numbers are actually the
nominal 95% emittance values.) Drawn at three locations in Part
(a) are ellipses corresponding to the projection of the covariance
matrix,C, into the transverse position sector. They represent the
footprint of the bunch as it passes through a plane at each location.
The circular loci were obtained by assuming that the accelerator
hardware was perfectly aligned, and the more eccentric ones, by
introducing a 9 mrad roll in the upstream B0Q2 quadrupole, (the
low beta quad near CDF) that was discovered to have this roll.
Two effects occur: (a) the focus itself has expanded, and (b) the
orientation of the footprint rotates as one travels downstream –
the bunch “twists.” Optically, these characterize a condition of
astigmatism; the quad roll produced an astigmatic focus.

Of course, the emittances that appear in Eq.(2) do not really
refer to the “horizontal” and “vertical” planes. They refer to
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invariant planes in six dimensions, with “longitudinal” entering
into the mix. For the above example we simply assumed that
the emittances were〈ε1〉 = 〈ε2〉 = 30π mm-mr/βγ . A more
correct way of doing this calculation would be to infer the true
emittances from three flying wire measurements, as described in
the preceding section, but the results would not change signifi-
cantly.

B. Luminosity Profiles

A more direct way of estimating the effect on lu-
minosity is shown in Figure 2(b). The expression
exp(−s2/2σ 2

z )/(detC(s))
1
2 is plotted within a two meter interval

of B0. This profiles the integrand of the luminosity integral at the
instant when the centroids of the proton and antiproton bunches
meet. The two solid curves correspond to (1) the ideal case of
no quad roll and (2) the “actual” case, corresponding to a 9 mrad
quad roll with skew quad settings as they actually existed during
the run up to July 20, 1995. The dashed curves illustrate three
hypothetical scenarios: (3) a “best-case” scenario, in which the
effect of the quad roll is compensated by the SQB0 skew-quad
correction circuit only, (4) a “worst-case” scenario, in which the
SQA0 circuit was not used to compensate, and (5) an attempt
to mimic the quad roll with skew quad circuits, without rolling
the quad. Notice that (5) comes nowhere near the other dashed
curves, or curve (2).

C. Online 6-D Calculation

Eq.(6) has been implemented in conjunction with an online,
interactive, six-dimensional model of the Tevatron using the C++
class libraries MXYZPTLK and BEAMLINE [3]. Using the de-
sign lattice, a comparison was made using the beam conditions
of the present collider run. Two Tevatron collider stores were
chosen; one before the quadrupole roll was discovered and one
after. In the model the quadrupole was rolled 8 mrad. The in-
variants (Ik) have been calculated using the sigmas from three
Tevatron flying wire measurements. The ratio of measured lumi-
nosities at CDF and D0 before the rolled quadrupole discovered
was 0.76; the model predicts 0.70. For a store after the roll was
corrected the measured ratio was 1.13; the model predicts 1.03.
In the rolled quadrupole case, the luminosity distribution at CDF
is skewed towards the upstream end of the interaction region.
This is in agreement with both the model and with Figure 2.

Several effects have been neglected in the calculation. The
electrostatic separators were assumed to be zero and no account
was taken of RF bucket cogging. Some of the Tevatron low-
β quadrupoles run at values slightly different from the design
in order to change the longitudinal position of the minimumβ.
Inclusion of these effects should bring the model calculation in
closer agreement with experimental data.

IV. Conclusions

Linear normal form analysis has been used to develop an ex-
pression for the luminosity in a coupled machine. Comparison
of calculation with experimental data show that the model can
reproduce the qualitative features of the data. Work is in progress
to implement a more accurate lattice model of the Tevatron and
to include electrostatic separators.
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