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Abstract

Computer Vision has been improved significantly in the
past few decades. It has enabled machine to do many hu-
man tasks. However, the real challenge is in enabling ma-
chine to carry out tasks that an average human does not
have the skills for. One such challenge that we have tackled
in this paper is providing accessibility for deaf individual by
providing means of communication with others with the aid
of computer vision. Unlike other frequent works focusing on
multiple camera, depth camera, electrical glove or visual
gloves, we focused on the sole use of RGB which allows
everybody to communicate with a deaf individual through
their personal devices. This is not a new approach but the
lack of realistic large-scale data set prevented recent com-
puter vision trends on video classification in this filed.

In this paper, we propose the first large scale American
sign language (ASL) data set that covers over 200 sign-
ers, signer independent sets, challenging and unconstrained
recording conditions and a large class count of 1000 signs.
We evaluate baselines from action recognition techniques
on the data set. We propose 13D, known from video classi-
fications, as a powerful and suitable architecture for sign
language recognition. We also propose new pre-trained
model more appropriate for sign language recognition. Fi-
nally, We estimate the effect of number of classes and num-
ber of training samples on the recognition accuracy.

1. Introduction

Approximately 2 million people in the United States can-
not understand normal speech, and of this number, around
500,000 use ASL to communicate [45], ASL is also used
in Canada, Mexico and 20 other countries. Just like any
other languages, ASL includes set of vocabulary as well as
a grammar which is different from English language. With
the improvement of machine learning and computer vision
techniques in the past decade, many challenging problems
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in this domain have been solved. Some of the devices that
we use daily benefit from these technical advances such as
face detection, face recognition, body pose detection and
others. We are intrigued by accessibility for the Deaf and
believe sign language recognition is an exciting field that
offers many challenges for computer vision research.

For decades, researcher from different fields have tried to
solve the challenging problem of sign language recognition.
Most of the proposed approaches rely on external devices
such as additional RGB [4] or depth cameras [63, 71], sen-
sor [40, 44] or colored [68] gloves. However, these require-
ments limit the applicability to specific settings where such
resources are available. We want to support sign recognition
using only a single RGB camera as we believe this will al-
low to design tools for general usage to empower everybody
to communicate with a deaf person using ASL. The sole use
of RGB for sign language detection is not new but the lack
of realistic large-scale data set prevent recent computer vi-
sion trends in this field. As such, our goal is to advance the
sign language recognition community and the related state-
of-the-art by releasing a new data set, establishing thorough
baselines and carrying over recent computer vision trends.
We make the following contributions with this work:

e We release the first large scale ASL data set called MS-
ASL that covers over 200 signers, signer independent
sets, challenging and unconstrained recording condi-
tions and a large class count of 1000 signs.

e We evaluate approaches by 2D-CNN, body key-point
and 3D-CNN as baselines on the data set.

e We propose 13D (known from action recognition) as
a powerful and suitable architecture for sign language
recognition and provide new pre-trained model for it.

e We estimate the effect of number of classes and and
number of training samples on the performance.

The outline of the paper is as follows. In Section 2, we
overview methods for sign language recognition as well as



current sign language data sets. Section 3 describes the
technical details of our proposed ASL data set. Section 3
describes the baseline methods we applied for benchmark-
ing as well as our proposed method. In Section 5, we ex-
perimentally show the performance of these methods on our
proposed data set. Section 6 summarizes the paper with a
conclusion.

2. Previous Works
2.1. Sign Language Methods

Researchers have tried to solve the challenges of sign
language recognition in different ways. In 1983, the first
work was a glove based device that allowed to recognize
ASL fingerspelling based on a hardwired circuit [27]. In the
meantime, there have been a lot of related approaches which
rely on tracked hand movements based on sensor gloves for
sign recognition [12, 23, 40, 44, 49]. Some works extended
this by adding a camera as a new source of information [45]
and they showed that adding video information improves
the accuracy of detection but the method mainly relies on
the glove sensors.

In 1988, Tamura et al. [60] were the first to follow vision-
based sign language recognition. They built a system to
recognize 14 isolated signs of Japanese sign language using
simple color thresholding. Because the sign is performed
in 3-dimensions, many vision based approaches use depth
information [39, 63, 71] or multiple cameras [4]. Some rely
on colored gloves to ease hand and finger tracking [68, 14].

In this paper we focus on non-intrusive sign language
recognition using only a single RGB camera as we believe
this will allow to design tools for general usage to empower
everybody to communicate with a deaf person using ASL.
The sole use of RGB for sign detection is not new, tra-
ditional computer vision techniques particularly with Hid-
den Markov Models [58, 57, 67, 25], mainly inspired by
improvements in speech recognition, have been in use in
the past two decades. With the advances of deep learning
and convolutional networks for image processing the field
has evolved tremendously. Koller et al. showed large im-
provements embedding 2D-CNNs in HMMs [36, 37], re-
lated works with 3D-CNNss exist [29, 6].

However, sign language recognition still lags behind re-
lated fields in the adoption of trending deep learning archi-
tectures. To the best of our knowledge no prior work exists
that leverages latest findings from action recognition with
I3D networks or complete body key-points which we will
address with this paper.

2.2. Sign Language Data Sets

With the appearance of deep learning based methods and
their powerful performance on computer vision tasks, the
requirements on training data have changed dramatically

from few hundred samples to thousands or even hundreds of
thousands of samples being needed to train strong models.
Unfortunately, public large scale sign language resources
suitable for machine learning are very limited and there is
currently no public ASL data set big enough to evaluate re-
cent deep learning approaches.

Some reviews of sign language corpora exists. Though
outdated, [42] provides a detailed table of sign language
publications and their employed data sets until the year
2004. A less extensive, but more recent table can be found
online '. Bellow, we have reviewed sign language data sets
with explicit setups intended for reproducible pattern recog-
nition research. The publicly available data set is presented
first followed by the available private resources, all ordered
by date.

e The Purdue RVL-SLLL ASL database [3 1, 70] con-
tains 10 short stories with a vocabulary of 104 signs
and a total sign count of 1834 produced by 14 native
signers in a lab environment under controlled lighting.

e The RWTH-BOSTON corpora were originally created
for linguistic research [2] and packaged for pattern
recognition purposes by RWTH Aachen University.
The RWTH-BOSTON-50 [72] corpus contains iso-
lated sign language with a limited vocabulary of 50
signs. The RWTH-BOSTON-104 constitutes of con-
tinuous sign language and covers a vocabulary of 104
signs performed by 3 signers. The RWTH-BOSTON-
400 corpus contains a vocabulary of 483 signs and also
constitutes of continuous signing by 5 signers. It has a
total of 7768 running gloss annotations.

e The SIGNUM corpus [66] provides two evaluation
sets: first a multisigner set with 25 signers, each pro-
ducing 603 predefined sentences with 3703 running
gloss annotation and a vocabulary of 455 different
signs. Second, it has a single signer setup where
the signer produces three repetitions of the given sen-
tences. The corpus is available for purchase. With
few variables, it is very controlled and [34] presented
a method with less than 5% error rates for it.

e In the scope of the DictaSign project, multi-lingual
sign language resources have been created [3, 20, 43].
However, the produced corpora are not well curated
and made available for reproducible research. A lot of
different versions exist which are based on the same
video recordings and annotations, but represent differ-
ent subsets. The Greek Sign Language (GSL) Lem-
mas Corpus [19] constitutes of such a data collection.
It provides a subset with isolated sign language (single

Ihttp://facundog.github.io/unlp/sign_language_
datasets/


http://facundoq.github.io/unlp/sign_language_datasets/
http://facundoq.github.io/unlp/sign_language_datasets/

signs) that contains 5 repetitions of the signs produced
by two native signers. However, different versions of
this have been used in the literature disallowing fair
comparisons and the use as benchmark corpus. The
corpus has been referred to with 1046 signs [50, 61],
with 984 signs [15] and with 981 signs [48]. Addition-
ally, a continuous 100 sign version of the data set has
been used in [51]. The reason for all these circulat-
ing subsets is that the data has not been made publicly
available.

e DEVISIGN is a Chinese sign language data set fea-
turing isolated single signs performed by 8 non-
natives [1 1] in a laboratory environment (controlled
background). The data set is organized in 3 subsets,
covers a vocabulary of up to 2000 isolated signs and
provides RGB with depth information in 24000 record-
ings.

e The Finish S-pot sign spotting task [05] is based on
the controlled recordings from the Finish sign lan-
guage lexicon [24]. It covers 1211 isolated citation
form signs that need to be spotted in 4328 continuous
sign language videos. However, the task has not been
widely adopted by the field.

e The RWTH-PHOENIX-Weather 2014 [26, 33] and
RWTH-PHOENIX-Weather 2014 T [5] are large
scale real-life sign language corpora that feature pro-
fessional interpreters recorded from broadcast news.
They cover continuous German sign language with a
vocabulary of over 1000 signs, about 9 hours of data
for training with about 800k frames. The data set is
very challenging from a segmentation and language
point of view however, it only features 9 signers and
limited computer vision challenges.

There are several groups which experimented with their
own data collection resulting in corpora with quite limited
size in terms of total number of annotations and vocabulary.
Often these resources are not made publicly available.

One such example is the non-public UWB-07-SLR-P
corpus of Czech sign language [8] which contains record-
ings of 4 signers with a 378 sign vocabulary and mostly 5
repetitions in 3 different camera views. It has a total length
of 11.1 hours. Unfortunately, no recognition results could
be found in the literature.

Another example is a data set by Barabara Loedings
Group [42, 47]. In their publications they describe differ-
ent data sets all containing at most 155 sequences with a
limited vocabulary. Other small scale corpora exist, which
are often not publicly available [7, 21].

To the best of our knowledge RWTH-PHOENIX-
Weather 2014 and DEVISIGN are currently the only pub-
licly available data sets that are large enough to cover re-

cent deep learning approaches. However, both data sets are
lacking the variety and number of signers to advance the
state-of-the-art with respect to the important issue of signer
independence and computer vision challenges from natural
unconstrained recordings.

In the scope of this work, we propose the first ASL data
set that covers over 200 signers, signer independent sets,
challenging and unconstrained recording conditions and a
large class count of 1000 signs.

3. Proposed ASL Data Set

Since there is no ASL public data set suitable for large
scale video classification training, we looked for realistic
data sources. The deaf community actively uses public
video sharing platforms for communication and study of
ASL. Many of those videos are captured and uploaded by
ASL students and teachers. They constitute challenging
material with large variation in view, background, lighting
and positioning. Also from a language point of view, we
encounter regional dialectal and inter-signer variation. This
seems very appealing from a machine learning point of view
as it may further close the gap in learning signer indepen-
dent recognition systems that can perform well in realistic
circumstances. Besides having access to well suited data,
the main issue remains labeling. Labeling video requires
skilled ASL natives, this is difficult to crowdsource with
platforms like Amazon Mechanical Turk or similar.

We noticed that a lot of the public videos have manual
subtitles, captions, descriptions or a video title that indicates
which signs are being performed in it. We therefore decided
to access the public ASL videos and obtain the text from all
those sources. We process these video clips automatically
in three distinct ways:

e For longer videos, we used Optical Character Recog-
nition (OCR) to find printed labels and their time of
occurrence.

e Longer videos may contain video captions that provide
the sign descriptor and the temporal segmentation.

e In short videos we obtained the label directly from the
title.

In the next step, we detected bounding boxes and used face
recognition to find and track the signer. This allowed iden-
tification of descriptions that refer to a static image rather
than an actual signer. If we identified multiple signers per-
forming one after the other, we splited the video up into
smaller samples.

In total we accessed more than 45,000 video samples
that include words or phrases in their descriptions. We
sorted the words based on frequency to find the most fre-
quently used ones while removing misspellings and OCR



Test
Val
s Train

2501 ‘

-
%
o

o
o
S

Frequency of video samples
N
o
o

[
o

T T T
5 50 75 100 125 150 175 200
Number of frames

|
Ul
1

0

0

Figure 1. Histogram of frame numbers for ASL1000 video sam-
ples.

mistakes. Since many of the ASL vocabulary publicly ac-
cessible videos are belong to teachers performing a lesson
vocabulary or students doing their homework, all top hun-
dred words belong to ASL tutorial books [74, 64] vocabu-
lary units.

3.1. Manual Touch-up

Although many of the samples videos are good for train-
ing purposes, some of them include the instruction to the
sign or several repeated performances with long pause in
between. Therefore, we decided to manually trim all video
samples with a duration of more than 8 seconds. For higher
accuracy on the test set, we chose the threshold to be 6
seconds there. Although our annotators were not native in
ASL, they could easily trim these video samples while con-
sidering other samples of the same label. We also decided to
review video samples shorter than 20 frames. There are few
samples outside of the defined criteria which also have been
reviewed by our annotators. In this way, around 25% of the
data set was manually reviewed. After the touch-up, almost
all the samples have less than 200 and more than 15 frames.
Figure 1 illustrates a histogram of the duration of the 25,513
video samples of signs after the manual touch-up. There
are unusual peaks for multiples of 10 frames which seems
to be caused by video editing software cutting and adding
captions, which favors such duration. Despite that, the his-
togram looks like a Poisson distribution with the average of
60. Combined, the duration of the video samples is just over
24 hours long.

3.2. ASL synonyms

Sign languages all over the world are independent, fully
fledged languages with their own grammar and word inven-
tory, distinct from the related spoken language. Typically,
sign languages have no standardized written form. There-
fore, a written word will usually just refer to the meaning of
a sign, not to the way it is executed. This is fundamentally
differ to most writing schemes of spoken languages which
also applies to ASL. As an example, look at the two En-
glish words Clean and Nice. While they are clearly distinct
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Figure 2. Showing the number of video samples for each of the
222 signers and the train/test/validation split of proposed data set
ASL1000. The signers are ordered by the number of their video
samples.

in English, they have similar signs in ASL which share the
same hand gesture and movement. On the other hand, the
English word Run has a distinct sign for each of its mean-
ing such as ”walk and run”, ”run for office”, ’run away”” and
“run a business” [64]. With respect to the ASL videos we
accessed from the internet and their descriptions, we needed
to make sure that similar ASL signs merged to one class
for training even if they have distinct English descriptors.
This process was implemented based on a reference ASL
Tutorial books[74]. This mapping of sign classes will be
released as part of the MS-ASL data set.

3.3. Signer Identification

Signer dependency is one of the most blocking chal-
lenges with current non-intrusive sign recognition ap-
proaches. To address this issue, our goal is to create a
recognition corpus which covers signer independent sets.
We want to ensure that the signers occurring in train, val-
idation and test are distinct. Therefore, we aimed at iden-
tifying the signer in each sample video. To achieve this,
we computed 5 face embeddings [52] for each video sam-
ple. Based on this, the video samples were then clustered
into 457 clusters. Some of these clusters were merged later
by using the prior knowledge that two consecutive samples
from a video tend to have the same signer. Additionally, we
manually labeled the low confidence clusters. Finally, we
ended up having 222 distinct signers. The found individu-
als occurred in the corpus with very diverse frequency. We
have 3 signers with more than one thousand video samples
and 10 signers with a single video sample each. We then
randomly distributed signers to train, validation and test set
signers aiming to divide data set partitions to 80%, 10% and
10% for train, validation and test, respectively. However,
due to the signer independency constraint and unbalances
samples, an exact division into these sizes was impossible.
We relaxed this condition, maintaining at least one sample
in each set for each class. The final amount of signers in
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each of the sets was 165, 37 and 20 for train, validation and
test, respectively. Figure 2 shows the frequency of samples
by all 222 signers and the train/validation/test split.

3.4. MS-ASL Data Set with 4 Subsets

In order to have a good understanding of the ASL vocab-
ulary and being a comprehensive benchmark for classifying
signs with diverse training samples, We release 4 subsets in-
cluding 100, 200, 500 and 1000 most frequent words. Each
includes their own train, test and validation sets. All these
sets are signer independent and the signers for train(165),
test(20) and validation(37) are the same as shown in Fig-
ure 2, therefore smaller sets are subset of the larger. We
call these subsets ASL100, ASL200, ASL500 and ASL1000
for the rest of this paper”. Table 1 shows the characteristics
of each of this sets. In ASLI00, there are at least 45 sam-
ples for each class while in ASLI000 there are at least 11
samples for each class.

Figure 3 illustrates the histogram of the number of video
samples per class for ASL/000. The bars at the right of
x = 47 form ASL100, the bars at the right of x = 35 form
ASL200 and the bars at the right of z = 21 form ASL500.

3.5. Data Set Challenges

We used automatic methods to access the data set and
limit the manual annotation work. While this was crucial
to speed up the corpus generation and reach data set sizes
suitable for deep learning, it increased noise in the transcrip-
tions. As described in Section 3.1, we controlled this factor
by manually verifying the labels of about one quarter of the
data set. And the fact that we used most frequent words
as well as manual touch-up for long samples decreased the
chance of wrong labels but we know that the data set is not
clean. There are challenges in this data set which make it
more challenging compared to other computer vision data
sets.

2 Instructions and download links:

e One sample video may include repetitive act of a dis-
tinct signs.

e One word can sign differently in different dialects
based on geographical regions. As an example, there
are 5 common signs for the word Computer.

e It includes large number of signers and is a signer in-
dependent data set.

e The are large visual variabilities in the videos such as
background, lighting, clothing and camera view point.

3.6. Evaluation Scheme

We suggest two metrics for evaluating the algorithms ran
in these data sets: 1) average per class accuracy, 2) average
per class top-five accuracy. We prefer per class accuracy
compare to accuracy because of the unbalance test set inher-
ited from the unbalance nature of the data set (Figure 3). To
be more precise, we compute the accuracy of each class and
reported the average value. In the top-5 accuracy, we call
it correct if the ground-truth label appears in the top five
guesses of the method being evaluated. We compute top-
five accuracy for each class and report the average value.
As we’ll discuss later in subsection 5.2, ASL, just like any
other language can have ambiguity which can be resolved in
context. That is the main reason we pick top-five accuracy.
On the other word, In order to have a good sign recognition
technique, it could have good accuracy in first guess or at
least on next few guesses.

4. Baseline Methods

Although it is much more challenging, but we can con-
sider isolated sign language recognition similar to action
recognition or gesture detection as it is a video classifica-
tion task for a human being. We can categorize current ac-
tion recognition or gesture detection into three major cate-
gories or combination of them 1) Using 2D convolution on
image and do a recurrent network on top of that [17,22] 2)
Extracting subject’s body joints in the form of skeleton and
using skeleton data for recognition [18, 73] 3) Using 3D
convolution [10, 62, 46]. In order to have baselines from
each categories of human action recognition, we implement
at least one method for each of these categories.

For all of the methods, We use person body bounding
box as input image, so We extract person bounding box
by SSD network [41] and release it for each video sam-
ple as part of MS-ASL data set. We employ the following
data spacial and temporal augmentations during the train-
ing stage for all methods. For special augmentations, body
bounding boxes are randomly scaled or translated by 10%,
shapped into a square and re-sized to fixed 224 x 224 pix-
els. We picked 64 as our temporal window which is average
number of frames for data set’s sample videos. In addition,



Number of Videos Duration Videos per class
Data set Class Subjects Train Validation Test Total [hours:min] Min  Mean
ASL100 100 189 3789 1190 757 5736 5:33 47 574
ASL200 200 196 6319 2041 1359 9719 9:31 34 48.6
ASL500 500 222 11401 3702 2720 17823 17:19 20 35.6
ASL1000 1000 222 16054 5287 4172 25513 24:39 11 25.5

Table 1. Showing statistics of the 4 proposed subsets of the MS-ASL signer independent sign language recognition data set.

the resulted video is randomly but consistently flipped hori-
zontally because ASL is symmetrical and can be performed
by either hands. We used fixed sized frame number as well
as fixed size resolution for 2D and 3D convolution meth-
ods. For temporal augmentations: 64 consecutive frames
are picked randomly from the videos and Shorter videos are
randomly elongated by repeating their fist or last frame. We
use 40 epochs for all training process. In this paper, we fo-
cused on RGB only algorithms and did not use optical flow
for any of the implementations. It is a proven fact that using
optical flow as second stream in train and test stage [54, 22]
or just train stage [ 1] boosts the performance of prediction.
Herein, we describe the methods used for determining base-
lines.

4.1. 2D-CNN

The high performance of 2D convolutional networks on
image classication makes them the first candidate for video
processing. This is achieved by extracting features from
each frame of video independently. The first approach was
to combine these features by simply pooling the predica-
tion, but it ignored the frame ordering or timing. The next
approach which proved more successful, was using recur-
rent layers on the top of 2D convolution networks. Moti-
vated by [17], we picked LSTM [28] as our recurrent layer
which records the temporal ordering and long range depen-
dencies by encoding the states. We used VGG16 [55] net-
work followed by an average pooling and LSTM layer of
size 256 with batch normalization. The final layers are a
512 hidden units followed by a fully connected layer for
classification. We considered the output on final frame for
testing. We also have implemented [35] as the state-of-the-
art on PHOENIX2014 data set [26, 33]. This method use
GoogleNets [59] as 2D-CNN with 2 bi-directional LSTM
layers and 3 state HMM. We report it as Re-Sign in experi-
mental result.

4.2. Body Key-Points

With the introduction of robust body key-points (so-
called skeleton) detection [69], some studies try to solve hu-
man action recognition by body joints only [18, 73] or use
body joints along with the image stream [13]. Since most
body key-point techniques did not cover hand details, it was
not rational to use it for sign language recognition task as

Figure 4. Extracted 137 body key-points for a video sample from

MS-ASL by [9, 53] with label Again.

it relies heavily on the movement of fingers. But a recent
work has covered hand and face key-points along with clas-
sical skeleton [53]. We leveraged this technique which ex-
tracted 137 key-points in total, to do a baseline on our data
set by body key-points. We extracted all the key-points for
all samples using [9, 53]. Using 64 frames for time window,
our input to the network would be 64 x 137 x 3 represent-
ing z, y coordinates and confidence values for the 137 body
key-points for all consecutive 64 frames. Figure 4 illustrates
the extracted 137 body key-points for a video sample from
proposed data set. Although this technique works well in
normal cases, the hand key-points are not robust specially if
the connection from body to the hand is not visible or hands
are very close to camera.

We implemented hierarchical co-occurrence network
(HCN) [73] which originally used 15 joints. We extended
this work by using 137 body key-points including hand and
face key-points. The input to this network is original 137
body key-points as well as per frame difference of them.
The network includes three layers of 2D convolution on top
of each input as well as two extra 2D convolution layers af-
ter the concatenation of two paths. We train this network by
Adam optimizer.

4.3. 3D-CNN

Recently, 3D convolutional networks have shown
promising performance for video classification and ac-
tion recognition including C3D network [62] and I3D net-
work [10]. We applied C3D [62] released code from au-
thor as well as our own implemented version to our pro-
posed data sets with and without pre-trained model, trained



Method ASL100 ASL200 ASL500 ASL1000 Method ASL100 ASL200 ASL500 ASL1000
VGG+LSTM  1333%  7.56% 1.47% - VGG+LSTM  33.42% 21.21% 5.86% -
HCN [73] 46.08% 35.85% 21.45% 15.49% HCN [73] 73.98% 6029% 43.83% 32.50%
Re-Sign [35]  78.12% - - 15.01% I3D [10] 95.16% 93.79% 89.80%  81.08%
I3D [10] 81.76% 81.97% 72.50%  57.69%

Table 2. The average per class accuracy for method mentioned in
section 4 on proposed ASL detests.

on Sport-1M [32]. The model did not converge for any of
our experiments. We adopted the architecture of I3D net-
works proposed in [10] and employed its suggested imple-
mentation details. This network is an inflated version of
Inception-V1 [30], which contains several 3D convolutional
layers followed with 3D max-pooling layers and inflated
Inception-V1 submodules. We started with pre-trained net-
work trained on Imagenet [16] and Kinetics [10]. We opti-
mized the objective functions with standard SGD with mo-
mentum set to 0.9. We began the base learning rate at 102
with a 10x reduction at epoch 20 when validation loss sat-
urated.

5. Experimental Result

We trained all of the methods mentioned in section 4
on four MS-ASL subsets (ASL100, ASL200, ASL500 and
ASL1000) and computed the accuracy for test set which in-
cludes subjects that are not included in training phase. As
described in subsection 3.6, we report two evaluation met-
rics: average per class accuracy and average per class top-
five accuracy. The results are reported in Table 2 and Ta-
ble 2 respectively. Although we did not optimize training
parameters or implement complex technical details for each
of these methods, we can still consider these results as a
baseline for 2D-CNN, 3D-CNN and body key-point based
approaches. The experimental result suggests that this data
set is very difficult for 2D-CNN or at least LSTM could not
pass the recurrent information well. In video classification
data sets such as UCF101 [56] or HMDBS51 [38], the image
itself carries context information regarding the classification
while in MS-ASL there is minimum context information in
a single image. Body key-point based approach (HCN) is
doing relatively better compared to 2D-CNN but there is a
huge room for improvement because of network simplicity
as well as future improvements for hand key-point extrac-
tion. On the other hand our 3D-CNN baseline (I3D) did
a pretty good job in this challenging, uncontrolled data set
and we propose it as powerful network for sign language
recognition.

5.1. The Effect of Pre-Trained Model

The fact that I3D training on ASL200 outperformed 13D
trained on ASL100 was not convincing as it contains twice
the classes as ASL100. We verified this result with further

Table 3. The average per class top-five accuracy for method men-
tioned in section 4 on proposed ASL detests.

experiments. We compute the average per class accuracy
of the I3D model trained on ASL200 on ASLIO00 test set at
83.36% which made the results less convincing. The only
proposed explanation is the lack of adequate training video
samples which is less than four thousands. This prompted
us to do a new experiment; We trained 13D on ASLI00 us-
ing the same setting as the last experiments except for using
ASL200 as pre-trained model instead of ImageNet+Kinetics
pre-trained model. The result was 85.32% for average per
class accuracy and 96.53% for average per class top-five
accuracy which is more than 3.5% performance boost. This
is a valid experimental approach as the test and train are
still separated due to signer independency. This verifies our
reasoning and suggests that the existing pre-trained model
is not suitable for sign language recognition. Because its
weights have been trained on irrelevant video classification
task with classes such as kayaking, skydiving and car driv-
ing. We proposed the model trained on MS-ASL as a 3D
pre-trained model for sign language recognition tasks.

5.2. Qualitative Discussion

Figure 5 illustrates the confusion matrix obtained by
comparison of the grand-truth labels and the predicted la-
bels from models trained by 13D on ALS200 data set. As
we expected, most of the values lay on the diagonal ele-
ment. Here is the list of brightest points off the diagonal
with value of more than .25 which represents per class worst
predictions:

- Good labeled as Thanks (.4): often the sign Good is
done without the base hand, this sign can mean Thanks or
Good

- Water labeled as Mother (.33): both by placing domi-
nant hand around chin area while the detail is different.

- Not labeled as Nice (.33)

- Today labeled as Now (.33): There are 2 version for
Today one of them is signing Now twice.

- Aunt labeled as Nephew (.33)

- Tea labeled as Nurse (.33)

- Start labeled as Finish (.3)

- My labeled as Please (.28): both sign by place the
dominant hand on the chest. A clockwise motion for Please
and gentle slapping for My

We did similar investigation for other data sets and find
interesting evidence about language ambiguity that could



Figure 5. The confusion matrix obtained by cdmparison of the
grand-truth labels and the predicted labels from models trained by
I3D on ALS200 data set.

solve within the context. Therefore, the error of the model
is combination of language ambiguity and prediction er-
ror. Our observation shows when we have smaller training
sets, model error mainly come from prediction errors but for
classes with more samples the error could came from lan-
guage ambiguity. This advise us to use five-top as our sec-
ond metric since eventually these predication need to feed
to language model with context.

5.3. The Effect of Number of Video Samples

In order to determine the adequate number of video sam-
ples per word needed to a good model, we experimented
with the number of samples illustrated figure 6. It shows
the accuracy of the models based on frequency of training
data for our experiments on test data. It shows a somewhat
similar curve for all the four experiments suggesting that
the accuracy correlates directly to the number of training
video samples for classes with less than 40 video samples.
However, for classes with more than 40 video samples, the
difficulty of the signs may be more important. Although
we have average accuracy of 80% for classes with more
than 40 training video samples, it does not suggest that 40
is the sweet spot. Direct comparison cannot be made as
this dataset lacks other classes which are significantly larger
than 40 video samples. The curve deep at z = 54 for all
networks belongs to the class Good which is the only class
with 54 training samples. We have discussed this in subsec-
tion 5.2.

5.4. The Effect of Number of Classes

In order to evaluate the effect of number of classes
in model prediction, We tested the I3D model trained on
ASLI1000 training sets on ASL500, ASL200 and ASL100 test
sets. This allowed a comparison between the model trained
on 100 classes with the one trained with 1000 classes on the
same test set. We did similar experiments with all possi-

Accuricy

—— 100 classes
0.4 4 200 classes
—— 500 classes
0.3 —— 1000 classes

1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 8‘0
Frequency of training video samples
Figure 6. The accuracy of 4 trained models based on frequency of
training video samples.

ble pairs and reported the average per class accuracy on Ta-
ble 4. In this table we show subsets of the MS-ASL data set
on the horizontal axis and the tested subsets on the vertical
axis. Increasing the number of classes decreased the accu-
racy of either the train or the test phase. Doubling the size of
test classes led to a small change from 83.36% to 81.97%
and doubling the size of the train classes from 85.32% to
83.36%. This suggests that the observed effect is signifi-
cantly less when we have more video samples per class but
it is inevitable.

13D trained on  ASL100 ASL200 ASL500 ASL1000
ASL100 85.32% - - -
ASL200 83.36% 81.97% - -
ASL500 80.61% T78.73% 72.50% -
ASL1000 75.38% 74.78% 68.49%  57.69%

Table 4. Showing the average per class accuracy of the model
trained on different subsets of the MS-ASL data set (horizontal),
subsets tested on (vertical).

6. Conclusion

In this paper, we proposed the first large scale ASL
data set with 222 signers and signer independent sets. Our
dataset contains a large class count of 1000 signs recorded
in challenging and unconstrained conditions. We evaluated
the state-of-the-art network architectures and approaches as
the baselines on our data set and demonstrated that the 13D
can successfully be used for sign language recognition as it
has the suitable architecture for the task. We also estimated
the effect of number of classes and number of training sam-
ples on the recognition accuracy.

For future works, we propose applying optical flow on
the videos as it is a strong information extraction tool. We
can also try leveraging body key-points and segmentation
on the training phase only. We believe that the introduction
of this large-scale data set will encourage and enable the
sign language recognition community to catch up with latest
computer vision trends.
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