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Text-Independent Speaker Verification Based on
Triplet Convolutional Neural Network Embeddings

Chunlei Zhang, Student Member, IEEE, Kazuhito Koishida, Member, IEEE, and John H. L. Hansen

Abstract—The effectiveness of introducing deep neural networks
into conventional speaker recognition pipelines has been broadly
shown to benefit system performance. A noveltext-independent
speaker verification (SV) framework based on the triplet loss
and a very deep convolutional neuralnetwork architecture (i.e.,
Inception-Resnet-v1) are investigated in this study, where a fixed-
length speaker discriminative embedding is learned from sparse
speech features and utilized as a feature representation for the SV
tasks. A concise description of the neural network based speaker
discriminative training with triplet loss is presented. An Euclidean
distance similarity metric is applied in both network training and
SV testing, which ensures the SV system to follow an end-to-end
fashion. By replacing the final max/average pooling layer with a
spatial pyramid pooling layer in the Inception-Resnet-v1 archi-
tecture, the fixed-length input constraint is relaxed and an obvious
performance gain is achieved compared with the fixed-length input
speaker embedding system. For datasets with more severe train-
ing/test condition mismatches, the probabilistic linear discriminant
analysis (PLDA) back end is further introduced to replace the dis-
tance based scoring for the proposed speaker embedding system.
Thus, we reconstruct the SV task with a neural network based
front-end speaker embedding system and a PLDA that provides
channel and noise variabilities compensation in the back end. Ex-
tensive experiments are conducted to provide useful hints that lead
to a better testing performance. Comparison with the state-of-the-
art SV frameworks on three public datasets (i.e., a prompt speech
corpus, a conversational speech Switchboard corpus, and NIST
SRE10 10 s-10 s condition) justifies the effectiveness of our pro-
posed speaker embedding system.

Index Terms—Speaker recognition, very deep convolutional neu-
tral networks, i-vector, PLDA, triplet loss, spatial pyramid pooling.

I. INTRODUCTION

PEAKER verification (SV) is a binary classification
problem which aims to verify a claimed identify based
on the claimed/enrolled speaker model. According to different
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TABLE 1
I-VECTOR BASED SYSTEM PERFORMANCE VERSUS DIFFERENT
DURATIONS IN SRE16 (EER %)

10s 20s 30s 40s 50s
1211 11.51 923 813 8.1

60s&up
7.42

EER

application scenarios, speaker verification systems fall into two
categories: text-dependent and text-independent [1], [2].

The text-dependent SV scenario requires the same set of
text phrases for enrollment and test. Combined with a keyword
spotting system (KWS), text-dependent SV can be integrated
within an intelligent personal assistants such as Microsoft
Cortana, Apple Siri, Google Home etc., where KWS and
text-dependent SV serves as a keyword voice-authenticated
wake-up to enable subsequent voice interaction [3]-[5]. Recent
advancements in text-dependent SV have been reported using
deep neural networks (DNNs) and recurrent neural networks
(RNNs) for speaker discriminative or phonetic discriminative
network training, where intermediate frame-level features
such as d-vectors [3], [5], bottleneck activations or phonetic
alignments are extracted to formulate utterance-level speaker
representations [6], [7]. More recently, DNNs, RNNs and
convolution neural networks (CNNs) with an end-to-end loss
log p(accept/reject) have been investigated to discriminate
between the same-speaker and different-speaker pairs for global
keyword (e.g., “OK Google” and “Hey Cortana”) speaker
verification tasks, and shown to achieve better performance
compared with conventional techniques such as GMM-UBM
or i-Vector/PLDA [3], [4]. For these end-to-end systems, the
impressive performances can be attributed to: a) a large dataset
with more than 10k+ speakers, which means sufficient variabili-
ties have been introduced in the speaker discriminative network
training; b) text-dependent speaker verification with a fixed
lexicon, where phonetic variability is largely constrained. How-
ever, it should be noted that these systems have not successfully
been applied to text-independent speaker verification.

In the context of text-independent speaker verification, the i-
Vector/probabilistic linear discriminant analysis (PLDA) frame-
work and its variants are the state-of-the-art across many tasks
[8],[9]. The i-Vector framework learns a single low-dimensional
subspace called the total variability subspace, through which
utterances of variable-length can be represented as fixed-length
feature vectors [10]. Despite great successes achieved in those
evaluations, i-Vector systems are prone to have performance
degradation when enrollment/test utterance durations are short.
Table I shows EERs with respect to different test utterance du-
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rations in CRSS submissions for NIST SREI16 [11]. A clear
speaker verification performance degradation can be observed
in this analysis. Also, early NIST SREs simplified the speaker
recognition problem being ensure that the duration of enroll-
ment and test utterances are constrained in many evaluation
conditions. As a result, relatively less attention was paid to
address the variability in utterance durations, especially when
short duration utterances are experienced in practical scenarios.

To compensate for insufficient information or context mis-
match due to short duration in i-Vector based text-independent
SV, several techniques have been proposed in recent studies. In
[12], the authors propagate the uncertainty from i-Vector esti-
mation into PLDA modeling for speaker verification, and show
substantial performance improvement on the NIST SRE10 core
and extended core conditions where duration variability is intro-
duced by randomly truncating the enrollment/test utterances in
the evaluation trials. Hasan ef al. [13] proposed to employ log-
scale duration information in the score calibration for duration
mismatch compensation, which also can be viewed as providing
uncertainty for short utterances in the score level. In addition
to these methods, replacing the UBM posteriors with more su-
pervised phonetic DNN posteriors at the acoustic model level
can also be beneficial for short utterance in general [7], [14].
However, the advancement comes at a cost of greatly increased
computational complexity and demanding well-annotated data,
and the performance gain is mostly limited to English data
(8], [11].

When we recall the traditional GMM-UBM based meth-
ods (including supervector, Joint Factor Analysis and i-Vector),
maximum a posteriori (MAP) estimation has been the key step
that adapts the universal background means to speaker depen-
dent feature vectors [10], [15]—-[17]. For short duration con-
ditions, since MAP adaptation is performed based on limited
data, the adapted Gaussian means are very sparse and lead to
relatively poor speaker recognition performance.

Using different deep learning frameworks with end-to-end
loss functions to train speaker discriminative embeddings has
drawn more attention recently. Snyder et al. and Garcia et al.
[18], [19] have shown that deep neural networks with an end-to-
end similarity metric or DNN based speaker embedding could
outperform the i-Vector baselines. Competitive performances
have been reported with speaker embedding systems based on
triplet loss function in either speaker diarization or speaker
verification tasks [20]. We have also proposed to apply fixed-
dimensional spectrogram as the input to Inception-resnet-v1 for
speaker embedding extraction [21], [22]. In that study, the triplet
loss is employed to optimize the network training [23], where
the Fuclidean distance is used in both training and test phase,
thus the entire SV system is developed in an end-to-end fash-
ion. From the results reported in [18], [22], end-to-end systems
achieved better performance compared with the i-Vector/PLDA
frameworks, especially when utterances are short.

Addressing variable-length input remains an interesting topic
for deep neural network based speaker embedding system [18],
[19], [20], [24], [25]. Our most recent work investigates the
construction of an end-to-end system which has flexibility in
utterance duration [26]. Previously in [22], to make a fixed
length input to the network (e.g., 4 s), we performed cropping if
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the utterance is longer than 4 s. To retrieve discarded informa-
tion for long utterances, we upgrade the network architecture
so that arbitrary length utterances can be directly mapped into
fixed-length speaker embeddings. More specifically, a Spatial
Pyramid Pooling (SPP) layer is proposed to replace the final av-
erage pooling layer within the Inception-resnet-v1 architecture
[27]. The modified Inception-resnet-v1 network would process
variable-length speech segments while producing fixed-length
speaker embeddings as the output.

In this current study, a systematic investigation is con-
ducted based on triplet convolutional neural network speaker
embedding system [22], [26], with more insights for more
challenging datasets. First, we present an overview of the
components which are essential for the proposed speaker
embedding system, including the concept of triplet, triplet loss,
triplet sampling/selection, Inception-resnet-v1 architecture and
the score metric. Next, two approaches which address variable-
length inputs are described as an extension of our fixed-length
end-to-end system. To utilize the advancement of SV back-end
classifiers for modeling channel and noise variability [28], [29],
the end-to-end system is further separated into two parts: a very
deep CNN to produce the speaker embeddings and an indepen-
dent classifier to distinguish between same-speaker target trials
and different-speaker nontarget trials. We perform speaker
verification experiments on three corpora: a prompt speech
corpus, a more challenging conversational speech Switchboard
corpus [30] and NIST SRE10 10 s—10 s condition. The former
two datasets are originally collected for speech recognition and
therefore segmented into short duration utterances, while the last
NIST SREI10 10 s—10 s is a standard evaluation protocol which
was design to evaluate the SV system performance on short du-
ration utterances. Since the main focus of this study is for short
utterance text-independent speaker verification, we believe that
the experiments on these three corpora should justify the tech-
nical and statistical soundness of the proposed SV framework.

Although more detailed explanations and analysis can be
found throughout this paper, let us first summarize the core
contributions here:

1) We provide a novel speaker embedding framework for
text-independent speaker verification based on deep networks
and triplet loss. The proposed method outperforms state-of-the-
art i-Vector/PLDA solutions in various evaluations, especially
for short duration utterances;

2) The speaker embedding approach results in consid-
erably simplified SV systems, compared with traditional i-
Vector/PLDA methods;

3) The very deep CNN architecture is modified with a SPP
layer for variable-length input, which could potentially be ap-
plied to general sequential data in additional to speech.

4) We provide an experimental evaluation that conventional
back-end classifiers combined with the proposed triplet convolu-
tional neural network speaker embeddings can further improve
SV performance with a big margin.

The remainder of this paper is organized as follows. An
overview of the end-to-end framework is presented in Section II.
The methods which handle variable-length utterances are
described in Section III. The corpora together with correspond-
ing baselines used for system development are introduced in
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Fig. 1. The architecture of our end-to-end triplet loss based system for text-
independent speaker verification.

Section IV. Section V details the experimental results with the
proposed systems for different datasets, as well as how these
systems behave in contrast with the i-Vector/PLDA baseline.
Finally, we conclude our work in Section VI.

II. END-TO-END SPEAKER VERIFICATION SYSTEM

This section describes an overview architecture of our pro-
posed end-to-end speaker verification. The details of its essential
components and modifications for speaker embedding network
training are presented in the following sections.

A. Overview of System Structure

The main idea behind the end-to-end system is depicted in
Fig. 1. For the speaker discriminative embedding training, a
triplet sampling module samples a batch of triplets so that
each triplet consists of an anchor x® as a reference utterance,
a positive xP which is an utterance from the same speaker
with anchor, and a negative x" which is from a different
speaker. We propose a deep architecture fy (can be flexible
to apply many different deep nets, Inception-resnet-v1 in our
study) which maps the acoustic features x into the fixed length
embeddings fy(z) € R?. The objective of the network training
is to minimize the distance between the embeddings of the
anchor and positive samples, while maximizing the distance
between the embeddings of the anchor and negative samples.
The L, normalization constrains the speaker embedding into
a unit hypersphere such that the d-dimensional feature vector
satisfies the constrain to || fp (x)||2 = 1. Here, the Lo-Norm can
be viewed as replacement of length-normalization for i-Vector
based SV systems [31].

A similarity metric called the triplet loss is employed to
optimize networking training, where the network parameter 6 is
updated after each batch of triplets.

B. Triplet Loss

Triplet loss was originally proposed in [23] for learning dis-
criminative face embeddings from images. For speaker verifi-
cation, we also want the anchor embeddings f(z7) to be more
similar to the positive embeddings f(z!) than to any negative
embeddings f(z!'), (i.e., network training wants the embeddings
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to satisfy the following relation):
£ f) = FEDIE < [1F () = fa)B,
V(xf, ol al) e T (1)

where 7 is the batch of triplets, with (z¢,z, z") representing

a single triplet. A margin « is empirically defined such that a
sufficient distance is enforced between the positive and negative
pairs with network mapping. Here, we employ the Fuclidean
distance as the similarity criteria. The triplet loss is formulated
as (3) with the objective to minimize this loss over the batch 7°
of triplets:

Ai = () = FEDIE = 1f (=) = FE)3 +a, )
N
L:Zmax(O,Ai),(x?,xf,x}L) eT 3)
i=1
where L is the triplet loss over a mini-batch, N is the batch size,
the gradient w.r.t the “anchor” input f, “positive” input f}, and
“negative input fg':

OL _ S~ [2(f() = @) it A =0
ofy N Z 0, otherwise )

i=1

N Py ¢ i .
oL _Z{Q(f(a:i) f(zf)), if A; >0 5)

w o = 0, otherwise
OL _ N~ [2(fah) ~ fa) 1A =0 g
ofy — 0, otherwise

With a hinge loss like design in (3), triplet samples which
are already well separated (corresponding gradient is 0) will
not contribute to the gradient calculation for the batch-wise net-
work update according to (4)—(6), which speeds up the learning
process during training.

C. Triplet Sampling and Selection

Similar to the triplet sampling strategy proposed in [20] and
[23], we select triplets which violate the constraint || f(z¢) —
FE3 +a < | f(z¢) — f(z)||3, with empirical margin o =
0.2.

In this study, one epoch will not see all the training speakers
(M speakers) due to triplet sampling. Instead, n segments are
randomly sampled from each of the m speakers from the train-
ing speaker pool, this leads to a total of mn(n — 1)/2 anchor-
positive pairs. Then, for each of those pairs, we randomly choose
one negative sample out from all (m — 1)n negative candidates.
This operation results in mn(n — 1)/2 triplets for one epoch. It
is noted that one epoch only samples a small subset of training
speakers (i.e., m < M). The triplet sampling strategy can be
viewed as statistical version of sampling all the training speak-
ers, but in a more efficient way. One can observe performance on
the validation set to better monitor the training process between
these “shrinked” epochs.

The actual speaker number m and segments number n of each
speaker depends on different datasets. All the detailed setup for
each dataset can be found in Section V-A.
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Fig. 2. A simplified architecture of Inception-Resnet-v1 network. The Stem
is a particular convolutional network module before the Inception-resnet blocks,
detailed implementation can be found in [32].

D. Inception-Resnet-vl Network

The network architecture proposed for our speaker embed-
ding system training is Inception-resnet-v1, which has shown to
be the state-of-the-art framework for image classification tasks
in the computer vision community [32]. It is an extension of
Inception net with residual connections added to overcome the
problem of vanishing/exploding gradients, which is a very com-
mon problem in very deep neural network architectures [33],
[34]. The network will output 1792 feature maps at the final con-
volutional layer, which behaves like a UBM model in conven-
tional SV systems (i.e., conventional SV pipelines adopt UBM
models to perform acoustic feature alignment, while our pro-
posed architecture uses a fixed number of filters to achieve the
same purpose). Fig. 2 is a simplified diagram of the Inception-
resnet-v1 network, where more details about this very deep CNN
based network architecture can be found in [32]. It should be
noted that the Inception-resnet-v1 is a hand-craft design with
only one hyperparameter which needs to be tuned: the embed-
ding size controlled by the final fully connected layer. Also,
different network architectures can be applied to our end-to-
end system, such as Inception network and Bi-LSTM which are
already proved to be effective in similar tasks [20], [23].

E. Speaker Verification Evaluation

Through the speaker discriminative network training, the ex-
tracted speaker embedding can be used to measure the similarity
between speakers. In this phase, the negative Euclidean distance
between pairs is employed as the similarity score as (7).

S(xmlrollv Itcst) - 7||f($cnroll) - f(xtcst)”gv

@)

where || - ||z is the 2-norm operation of a vector. With this
score metric employed as the back-end, one can consider the
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SV system follows an end-to-end paradigm without additional
training of classifiers on top of speaker embeddings.

Here, we established a connection between (7) and com-
monly used Cosine Distance Scoring (CDS) method in speaker
verification. For an Ly-normalized vector x, y (i.e., [|x||s = 1,
lly|l2 = 1), it is shown that negative squared Euclidean distance
is proportional to the cosine distance:

—lx -yl =-(x-y) (x-y)
= x'x+2xTy—yly

=2cos Z(x,y) — 2 (3)

Equation (8) indicates that triplet speaker embedding
with cosine distance is actually the end-to-end system
with negative Euclidean distance. For this consideration, the
“triplet_embedding+CDS” system in Fig. 12 for example is the
equivalent to the end-to-end system.

To further improve the SV robustness against channel and
noise variabilities, it is still possible to utilize previous devel-
oped back-end classifiers from speaker verification community,
(e.g., replacing i-Vectors with the utterance level speaker em-
beddings for text-independent speaker verification). We show
that conventional back-ends such as PLDA can further improve
SV performance in Section V.

III. SYSTEM EXTENSION FOR VARIABLE-LENGTH INPUT

To ensure the speaker embedding system to be flexible against
utterance duration, two approaches are investigated: 1) truncate
the variable length utterances into multiple fixed size segments,
and apply the model developed for fixed-length input; 2) mod-
ify the network architecture such that the end-to-end system can
process variable length utterances. With additional information
added for SV decision making, it is expected that these exten-
sions could lead to improved performance for long utterances
with consistent accuracy retained on short utterances.

A. Incremental Speaker Embedding Average

It has already been shown that multiple utterances for speaker
enrollment or multi-session SV improves overall speaker verifi-
cation performance [35]. To make full use of the long utterances
instead of discarding them, the long duration utterances are cut
into fixed length segments, followed by a feed-forward pass of
the fixed-length model to extract speaker embeddings, and then
average the speaker embeddings for an utterance-level based
verification process. Fig. 3 is a flow diagram for this “incremen-
tal” speaker embedding average operation, where a skip rate of
0.5 is used here (e.g. 2 sec for a 4-sec system).

B. Inception-Resnet-vl With Spatial Pyramid Pooling

An alternative way to handle variable-length duration audio
files is to modify the network architecture such that the net-
work can directly produce fixed-length feature vectors before
the fully connected layer. In this aspect, an RNN is one suitable
architecture for sequential speech utterances [20], [36]. Also,
developing convolutional network architectures that can han-
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Fig. 3. Flow diagram of incremental speaker embedding average operation,
where a mean speaker embedding is produced for the next stage in speaker
verification.
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Fig. 4. Spatial pyramid pooling operation as a technique to replace average
pooling for extracting speaker embeddings.

dle variable-length features is still an interesting direction in
deep learning community [27], [37]. Since the current prelimi-
nary system with Inception-resnet-v1 has already been shown to
be effective in text-independent speaker verification tasks [22],
it is more attractive to incorporate a technique which handles
variable-length utterances with the alternative CNN-based net-
work. It is believed that Spatial Pyramid Pooling [27] can be
an alternative solution for this purpose. Fig. 4 shows the funda-
mental structure of the Spatial Pyramid Pooling operation.
Instead of employing a sliding window to max/average pool
the feature maps of the traditional convolutional layer output,
where the number of the sliding window depends on the input
size, spatial pyramid pooling can be used in order to maintain
spatial information by pooling in local spatial bins. These spatial
bins have sizes proportional to the actual input feature size, so
the number of bins is fixed regardless of the image size. As
illustrated in Fig. 4, these feature maps are divided into 1 x
1,2 x 2,3 x 3 small patches, followed by average pooling
performed over these patches, which results in an output fixed-
length vector as the input to the following fully connected layer.
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As shown in right half of Fig. 5, the final average pooling
layer is replaced with the spatial pyramid pooling layer. Note
that with Inception-resnet-v1, the feature maps after the final
convolutional layer are usually of small size, where in the current
SPP implementation, it is only necessary to apply 1 x 1 and
2 x 2 spatial division. Also, for training speed consideration,
zero-padding is performed for the samples of the same data
batch.

IV. EVALUATION CORPORA AND BASELINE
SYSTEMS FOR SPEAKER VERIFICATION

Three corpora are used to evaluate SV performance of the
proposed methods. Corpus 1 contains only prompted speech,’
Corpus 2 is the Switchboard ASR corpus with conversational
speech [30], Corpus 3 is NIST SRE10 10 s—10 s. All three
datasets are publicly available and evaluated in the short duration
format. The statistical details of three corpora and corresponding
baselines are provided in the following sections.

A. Corpus 1 and the Baseline Systems

Corpus 1 is a large collection of speakers consisting of record-
ings from three different mainstream platforms, (i.e., Android,
iPhone and Windows Phone). The corpus was split for network
training, system validation and final evaluation, without speaker
overlap among the subsets, see Table II for corpus statistics.
There is a total 2790 speakers in the corpus, with approximately
300 short utterances for each speaker. The duration distribution
are illustrated in Fig. 6 with a mean duration of 4 s.

To validate and monitor system training, 180 speakers were
selected from the validation set. 20 utterance is randomly se-
lected from each speaker, which results in 190 target and 179

Ihttp://kingline.speechocean.com/exchange.php?id=1191&act=view
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TABLE II
THE NUMBER OF SPEAKERS IN TRAINING, DEVELOPMENT AND TEST SETS,
AND CORRESPONDING MEAN UTTERANCE DURATION STATISTICS

Android  iPhone = WinPhone  total  mean/s
training 954 470 249 1673 4.02
validation 318 156 83 557 3.98
test 319 158 83 560 3.97
15000 T
10000 | -
5000 | _-Tra'ming
0 -
0 5 10 15 20
[ validation |
15 20
mTest'
0 o o 5 - 10 15 20

Duration/s

Fig. 6.

Duration distributions of training, validation, test set.

nontarget trials per speaker. For system performance evaluation,
450 speakers are picked from the test pool. For each speaker,
10 utterances are sampled as the enrollment data, 80 target
trials and 80 nontarget trials are generated to keep the evalua-
tion balanced, where test utterance durations are in the range
0.5-27 s. In total, 720K trials are created for testing.

The i-Vector system developed is based on the Kaldi
SRE10/v1 [38]. Front-end features consist of 20 MFCCs with
a frame-length of 30ms that are mean-normalized over a slid-
ing window of up to 3 seconds. Delta and acceleration features
are appended to create 60 dimensional feature vectors. Non-
speech portions of the utterances are removed with energy based
voice activity detection. The UBM is a 1024 component full-
covariance GMM. The system uses a 400 dimension i-Vector
extractor. Prior to PLDA scoring, i-Vectors are both centered
and length normalized. The entire training dataset is used for
the UBM, T-Matrix and PLDA training.

B. Corpus 2 and the Baseline Systems

Corpus 2 consists of Switchboard (SWB) training data
(LDC97S62) and evaluation data (a subset of LDC2002S09),
which was originally collected for speech recognition [30].
Kaldi swbd/s5 is employed for pre-processing such that each
conversation is segmented into short utterances [38]. For SWB
training set, there are 521 speakers in total, a set of 500 speakers
were randomly selected from the SWB training set for triplet
network training, while the remaining 21 speakers are used for
validation.

For the evaluation, a total of 3234605 trials were created from
the evaluation segments by exhausting all possible pairs, the trial
list is accessible from our site.

Zhttps://github.com/heimanba89/SWB_SV
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Similar to the configuration of baseline for Corpus 1, a UBM
i-Vector system is developed as one baseline for Corpus 2. The
only difference is that LDA is added for dimension reduction
(400-D reduced to 300-D) before a PLDA classifier.

It is acknowledged that DNN brings additional SV perfor-
mance improvement for speech data with transcriptions [7]. In
this study, a DNN i-Vector system is also developed based on
Kaldi (swbd/s5 & SRE10/v2), where the UBM acoustic model
is replaced by a more supervised DNN model. The DNN archi-
tecture consists of 6 fully connected hidden layers with 1024
nodes for each layer. A cross-entropy objective function is em-
ployed to estimate the posterior probabilities of 3178 senones.
An 11-frame context of 39 dimensional (A + AA ) MFCC fea-
ture are projected into 40 dimensions using a fMLLR transform
for each utterance [39], which relies on a GMM-HMM decoding
alignment. The reason we apply the fMLLR feature here is that,
by speaker normalization, it is expected to acquire more accu-
rate phonetic alignment for the following TV matrix training
(see more details in [40]). After i-Vector extraction, the same
back-ends developed for the UBM i-Vector system are applied.

C. Corpus 3 and the Baseline Systems

Corpus 3 consists of SWB training data and NIST SRE2004,
2005, 2006, 2008 corpus. And we test on NIST SRE10 10s-10's
condition.

We develop two i-Vector baselines for the SRE10 10 s—10 s
evaluation: a UBM i-Vector system and a DNN i-Vector system.
For the UBM based model, we extract 60 dimension MFCC
features within a 25 ms window, with a shift size of 10 ms.
Non-speech frames are discarded using an energy-based VAD.
2048-mixture full covariance UBM and TV Matrix are trained
using SRE04-08. At the back-end level, i-Vectors are length
normalized and the dimension is reduced from 600 to 400 using
LDA. The PLDA classifier is trained with the i-Vectors from
SRE04-08 set. The DNN i-Vector model follows almost the
same pipeline as the UBM model except for the posterior esti-
mation part, where a SWB ASR acoustic model (developed for
Corpus 2) is employed to generate frame-level posterior for TV
Matrix training and i-Vector extraction.

V. EXPERIMENTS

In this section, configurations of triplet sampling for different
datasets is presented first, followed by a description of input
features of the speaker embedding systems. After the summa-
rization of experimental, detailed results are reported as follows.

A. Triplet Sampling for Three Different Datasets

An efficient triplet sampling is important for speaker em-
bedding system training. Table III lists all the triplet sampling
configurations in our experiments. The choice of #SPK, #UTT
and batch size depends on individual dataset. For example, the
#UTT of each speaker of SRE data varies in a large range, while
the number total speakers is at 4k level. For this consideration,
it is appropriate to use a large #SPK while keep #UTT a rela-
tive small number to ensure a sample balanced training for each
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TABLE III
TRIPLET SAMPLING FOR ONE EPOCH ON THREE DIFFERENT DATASETS

#SPK  #UTT  #max_triplet  batch size
Corpus 1 60 40 46800 90
Corpus 2 80 30 34800 60
Corpus 3 240 20 45600 60

#SPK is the speaker number m , #UTT is the segment number per speaker
n, #max_triplet is mn(n — 1) /2, batch size the number of samples
(e.g., a batch size 90 contains 90/3 = 30 triplets) for network update.

TABLE IV
A SUMMARIZATION OF FEATURE EXTRACTION FOR THREE
DIFFERENT DATASETS

scale  sample rate  frame length  4s output
Corpus 1 linear 16 kHz 32ms 160250
Corpus 2 linear 8 kHz 32ms 128 %250
Corpus 3 linear 8 kHz 32ms 128 %250
Corpus 3 mel 8 kHz 32ms 120x250

speaker. It is noted that the triplet sampling would occasionally
find a speaker with the number of samples less than #UTT. That
is the reason we note mn(n — 1)/2 as the #max_triplet, instead
of actual number of triplets.

B. Input Features for Speaker Embedding Systems

We evaluate two kinds of features as the input to the Inception-
resnet-vl network: a linear scale spectrogram and a mel-scale
fbank feature. The configuration of feature extraction varies ac-
cording to wavfiles of individual dataset. Table IV summarizes
the parameters of different feature extraction methods. For Cor-
pus 1 with the 16 kHz sample-rate, assuming a 0-5K frequency
and 4 s time-axis range of interests, the linear scale spectrogram
operation results in a 160 x 250 2-d feature matrix using a 512
point FFT. It is noted that the height and width of the spectro-
gram will change according to the selected frequency bins and
duration. As for 8 kHz datasets (i.e., Corpus 2 and Corpus 3),
a 256 point FFT and 0-4K frequency bin in a 4s-segment will
produce a feature matrix of dimension 128 x 250. We also em-
ploy a mel-fbank feature for Corpus 3 (NIST SRE10 10 s-10 s
condition), a 40-dimension mel-fbank and A and AA with a 32
ms frame-length and 50% overlap leads to a 120 x 250 feature
matrix for a 4s-segment.

C. Experiments on Corpus 1

In this section, the speaker embedding system with distance
scoring (i.e., named after “e2e” for simplicity throughout Sec-
tion V-C) on fixed-length input is evaluated with respect to learn-
ing rate/epochs, duration conditions, number of enrollment ut-
terances. Next, the fixed-length constraint is removed with the
SPP modification and the “incremental” method, the speaker
embedding dimension is 128 for all the models developed on
Corpus 1. Finally, the advantages of our proposed methods are
analyzed over the i-Vector/PLDA system for various duration
conditions.

1) Learning Curves on Validation Set: To observe the per-
formance of the proposed fixed 4 s input “e2e” system on the
validation set, two different metrics are utilized in the exper-
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Fig.7. The SV performance across epochs on Corpus 1. Learning rate =0.1 is

used for the first 36 epochs, 0.01 is used until 60 epochs, since than a decay rate
0.5 is applied every 20 epochs, and the RMSProp [41] optimizer is employed
throughout the learning process.

TABLE V
UTTERANCE LEVEL SPEAKER VERIFICATION PERFORMANCE ON TEST SET OF
CoRrprUS 1, RESULTS FROM 3 DIFFERENT TRAINING STAGES (E.G., “E2E/40 E”
REPRESENTS THE E2E SYSTEM IS TRAINED WITH 40 EPOCHS) ARE PRESENTED

i-Vector/PLDA
3.58%

fusion
2.87 %

e2e/40 E
3.98%

e2e/80 E
3.26%

e2e/120 E
2.97 % %

system
EER

iment. The first is true acceptance rate (TAR) at a specified
false acceptance rate (FAR), written as “TAR@10 3FAR”. The
definition of TAR and FAR is given as:

4TA
—— FA
#Target’ R

where #TA, #FA, #Target, #Nontarget are the number of
true accepts, false accepts, target trials and nontarget trials re-
spectively. By setting a threshold such that a very low FAR (i.e.,
107?) is fixed, TAR will increase with the training progresses.

Another metric employed is equal error rate (EER). The stop
criteria for training is based on these two metrics. In fact, as
shown in Fig. 7, TAR still improved even EER saturates after
60 epochs. In the test set, better performance is obtained from
the model with a higher TAR, although the EER is almost the
same on validation set.

2) Performance on Test Set: Table V illustrates results of
the “e2e” system on the fixed 4 s condition. The best “e2e”
system achieves a +17.0% relative improvement over the
i-Vector/PLDA baseline. An equal weight score fusion of
“e2e 120 E” and “i-Vector/PLDA” further boosts performance
+19.8% due to the significant architectural differences between
the end-to-end system and the i-Vector baseline.

3) Performance Against Shorter Duration: Fig. 8 shows
DET curves of the 4 systems. More specifically, 4 s, 3 s and
even shorter 2s conditions are tested with the “e2e” framework.
In Fig. 8, a performance degradation is observed when the du-
ration is reduced from 4 s to 3 s or 2 s. In terms of EER,
the 3 s condition has a comparable performance with the i-
Vector/PLDA system (slightly better: 3.43% VS. 3.58%). It is
also interesting to note that three “e2e” systems behave consis-

#FA

TAR = =
#Nontarget’

&)
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Fig. 8. E2E system DET curvess on different duration conditions of Corpus

1 with comparison with the i-Vector/PLDA system.

TABLE VI
SPEAKER LEVEL SPEAKER VERIFICATION PERFORMANCE ON TEST SET, WITH
1,2, 5, 10 UTTERANCES FOR ENROLLMENT IN TERMS OF EER, ON CORPUS 1

# enroll utts 1 2 5 10
i-Vector/PLDA  3.58% 2.76% 2.03% 1.97%
end-to-end 297% 241% 1.94% 1.84%
TABLE VII

THE EERS OF I-VECTOR/PLDA, END-TO-END 4 S AND END-TO-END
VARIABLE LENGTH, ON THE TEST SET OF CORPUS 1|

i-Vector/PLDA
3.58%

eZe 4s
2.97%

e2e variable length
2.72%

tently: better performance in the False Alarm dimension while
lower performance in the False Reject dimension compared with
the i-Vector/PLDA system. This observation suggests that some
form of fusion with i-Vector system would be a good option
in practice, and potentially to help improve/balance out false
accepts/rejects. Besides that, a high false rejection rate indicates
that the embeddings from the same speaker are not sufficiently
close, which shows that there is still some room to improve the
triplet training.

4) Performance Against Number of Enrollment Utterances:
It should be noted that both validation and test trial lists are at the
utterance level. To evaluate how multiple enrolled utterances in-
fluence SV performance, scores are averaged across enrollment
utterances to make a final speaker level decision [35].

Results are presented with different number of utterances for
enrollment in Table VI. The enrollment action is performed at
the score level by averaging scores from the same test utterance.
More than 37% of the relative improvement has been achieved
when the number of enrolled utterance increases from 1 to 10.
From Table VI, a relatively greater improvement is observed
when 2 and 5 utterances are enrolled for the speaker model,
while the gains with multiple utterance enrollment begins to
level off after 5 utterances.

5) Performance for “e2e” System With Spatial Pyramid
Pooling: Table VII lists the EERs of three systems: i-
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Fig. 9. The DET curves of incremental method and spatial pyramid pooling
for variable-length input utterances on Corpus 1.

Vector/PLDA, “e2e” fixed 4 s (best single system in [22]) and
“e2e” variable length with SPP. In terms of EER, the end-to-end
variable length with SPP achieves +8.4% relative improvement
over “e2e” 4 s system, and +24.0% over the i-Vector/PLDA
system. With SPP applied on the Inception-resnet-v1, while the
input length constraint is removed, there is SV performance
improvement as well.

6) Performance Comparison on Incremental Method and
Spatial Pyramid Pooling Method: this section compares two
alternative ways in which to handle variable length utterances
within the “e2e” framework. As demonstrated in Fig. 9, the
“e2e” variable length with the SPP modification gives the best
performance, and all “e2e” incremental systems have perfor-
mance improvement over their respective fixed length ver-
sions. It can be seen that improvement is shrinking with better
base models, which indicates the limitation of the incremental
method.

7) Performance on Different Duration Conditions: A clear
performance boost has been shown by removing the fixed length
constraint from the “e2e” system. In this experiment, we demon-
strate how this “e2e” variable length behaves on different du-
ration conditions. To do so, the test trial list is sorted in terms
of test utterance duration, and equally split the list into 6 small
lists. The duration ranges are depicted in Fig. 10. For com-
parison purposes, the results are illustrated from the baseline
i-Vector/PLDA and “e2e” 4 s system.

Several observations can be seen from Fig. 10: 1) the
i-Vector/PLDA system improves along with the test utterance
duration axis; 2) both “e2e” systems have significant advance-
ments over i-Vector/PLDA system for short utterances. 3) “e2e”
variable length retains the performance on short durations,
while compensating on the long duration portions; 4) the
network seems to learn the duration patten as it has the best
result for the “3.55-4.5 s” range, where it has the most samples
in the training set.
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Corpus 1.

D. Experiments on Corpus 2

On Corpus 1, it has been shown that the end-to-end sys-
tem achieves impressive performance gains compared with a
conventional i-Vector/PLDA method. In this section, the perfor-
mance is evaluated on SWB corpus, where DNN/i-Vector can
be implemented for system comparison. In Corpus 2 experi-
ments, the “e2e” system is split into separate parts: the network
is trained for speaker embedding extraction, followed by ap-
plication of standard back-ends such as CDS and PLDA for
speaker verification [10], [12], [42]. To ensure the same hyper-
parameter for both speaker embedding and i-Vector, we modify
the dimension for speaker embedding network to 400-D, same
as the i-Vector.

1) Performance on SWB Evaluation Data: as described in
Section IV-B, two formulations of i-Vector representations are
developed for performance assessment. Results are reported for
triplet speaker embedding with variable-length input Inception-
resnet-v1, since the best performance was obtained with this
architecture on Corpus 1.

Fig. 12 is the DET curves of resulting four systems. As shown
in the DET curves, the DNN/i-Vector system outperforms UBM
version with a relative +24.9% gain in terms of EER. This is
expected based on other studies in the literature [6], [7], [43].
Triplet speaker embedding with CDS back-end produces an
EER value which is similar to a DNN/i-Vector system, and a
replacement with PLDA achieves the best performance for the
SWB corpus.

Besides the overall SV performance, a similar trend was il-
lustrated with Corpus 2, which is consistent with previous ex-
periments: triplet speaker embedding systems have relatively
lower performance in the false rejection dimension. This ob-
servation indicates a potential weakness of triplet loss based
speaker embedding. While there are several ways to normalize
intra-speaker variability, for example, train a secondary network
with center loss [43] on top of triplet speaker embeddings is a
promising idea to address this problem. However, center loss
normalization is beyond the scope of this study, and suggested
for future work.
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2) Visualization of Speaker Representations, i-Vectors and
Triplet Speaker Embeddings: A more intuitionistic way to ob-
serve separated speakers in the decision space is to project the
speaker representations into a 2-D space. To do so, a PCA is
performed to reduce the dimensionality to 50 (either 400-D
i-Vectors or triplet speaker embeddings). We adopt the same
parameter T-SNE training setup for all three different speaker
representations. The T-SNE embedding is then applied for this
2-D scatter plot Fig. 11 [45]. While it remains a question as to
whether the speaker cluster is fully grouped together, as it does
appear to take more space for the triplet speaker embedding
cluster than the either UBM or DNN i-Vector clusters. From the
scatter plots, the observation that the triplet speaker embeddings
are well separated compared with the UBM or DNN i-Vectors,
which in turn explains the reason of SV performance gains from
our proposed triplet loss based speaker embeddings.

E. Experiments on Corpus 3

Table VIII details the SV performance of proposed speaker
embedding systems on the NIST SRE10 10 s—10 s condition.
In order to facilitate the system comparisons, the result from
[24] is also listed here as a reference. In order to to balance
the contradiction between the GPU memory limitation and long
dration SRE training data, an utterance segmentation process
should be conducted before speaker embedding network train-
ing. In practice, a 6 s and a 8 s segmentation is performed on
SRE04-08 training data. The detailed speaker embedding sys-
tem setup is included in Table VIII. The major components (e.g.,
duration, VAD, feature type, classifier) which are often reported
to significantly affect SV performance are examined thoroughly.

One can see from the above results, 8 s segment version
speaker embedding system achieves +11.8% relative improve-
ment over SPK_EMB2, which is developed on 6 s speech
segments. Compared with other speaker embedding systems,
SPK_EMB3 is clearly worse. The result again indicates us that
VAD is very important for speaker embedding systems on SRE
data. It is also noted here that mel scale features bring additional
performance gain, which shows the feature engineering is still
important in the deep neural network based frameworks. Fi-
nally, we arrive at SPK_EMBS, a speaker embedding + PLDA
based SV system which achieves state-of-the-art single system
performance for NIST SRE10 10 s—10 s condition.

Compared with our in-house developed baselines, we see that
the SPK_EMBS are +20.3% and +15.9% better against UBM
i-Vector and DNN i-Vector respectively. For across group com-
parison, we have a slightly better performance in the single
embedding perspective, while remaining a 12.2% performance
gap with their “embeddings” system. As indicated in [24], their
“embeddings” are extracted from two different layers of the
same network, which could be an interesting future direction to
explore the capability of neural network based speaker embed-
ding systems.

VI. CONCLUSION

In this study, a novel text-independent speaker embedding
system for speaker verification was proposed. Triplet loss func-
tion allows us to discriminatively train a speaker embedding
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Fig. 11.

2-D PCA+T-SNE scatter plots for UBM/i-Vector, DNN/i-Vector and speaker embedding for test utterance of Corpus 2 (in the order of left, middle and

right respectively). It is noted that each cluster represents a speaker, while the colour in this plot does not have meanings.
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Fig. 12.  EERs of i-Vector and triplet embedding systems with CDS or PLDA
back-end classifiers on Corpus 2.

TABLE VIII
EER (%) oN SRE10 10 s—10 s CONDITION

| System | seg_dur | VAD [ feats [ scoring [ EER % |

SPK_EMBI1 6s v linear PLDA 10.7
SPK_EMB?2 6s v mel PLDA 10.2
SPK_EMB3 8s X mel PLDA 14.9
SPK_EMB4 8s v mel CDS 11.4
SPK_EMBS5 8s v mel PLDA 9.0
UBM i-Vector / v MECC PLDA 11.3
DNN i-Vector / v MECC PLDA 10.7
embedding a [25] / v MFCC PLDA 11.0
embedding b [25] / v MFCC PLDA 9.2
embeddings [25] / v MFCC PLDA 7.9
i-Vector [25] / v MFCC PLDA 11.0

“/” denotes that the system training is not depended on fixed duration segments.

system with deep neural networks. A very deep CNN based net-
work architecture named Inception-resnet-v1 was successfully
employed for extracting speaker embeddings. An euclidean dis-
tance was integrated in both triplet loss calculation and simi-
larity measure within the trials, which ensures the speaker ver-

ification to follow an end-to-end manner. Additionally, we also
proved that an Lo-normalized speaker embedding with nega-
tive Euclidean distance is equivalent to classical cosine distance
scoring solution. This study also focused on duration variability
and its influence on speaker verification performance. To relax
the constraint of fixed-length-input for the previous framework,
two strategies were proposed to 1) “incremental” duration com-
pensation, 2) and replace the final average pooling layer with
a Spatial Pyramid Pooling layer within the Inception-resnet-v1
architecture. Both methods improved the overall performance,
and the “end-to-end variable length with spatial pyramid pool-
ing” solution achieved the best overall performance. All above
components can be attributed to our technical contributions of
this study.

Extensive experiments were conducted on three publicly
accessible datasets. Compared with the i-Vector/PLDA sys-
tems, competitive/better performances were consistently re-
ported across three different datasets with speaker embed-
ding systems with a simple distance scoring method. For
Corpus 1, a +17.0% relative improvement was achieved with a
fixed 4 s speaker embedding system with CDS, and a 4+-24.0%
relative improvement with a variable-length input speaker em-
bedding system with CDS. For Corpus 2, The introduction of
the PLDA back-end into the triplet speaker embedding sys-
tem brings additional performance gain over the conventional
i-Vector systems and the end-to-end system. Based on this, a
+39.0% and a +18.8% relative performance gain with respect
to a UBM/i-Vector and a state-of-the-art DNN/i-Vector system
was achieved. For the challenging NIST SRE10 10 s—10 s, we
evaluated different combinations of techniques within the triplet
speaker embedding framework which are essential for SV task.
By doing this, we hope to share more insights which are able
to contribute to this emerging direction for speaker verification
research.

Itis suggested that this study shows the potential of the neural
network based speaker embedding system for speaker recogni-
tion and related areas. In essence, this study is to change speaker
recognition from a design problem with many separated training
modules to a learning problem with neural networks. There are
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still many possibilities to improve the speaker embeddings sys-
tem, for example, employing robust features, applying different
neural network architectures, adding alternative loss functions
(in our case, adding a center loss like normalization term which
is promising to reduce high false rejection rate [44]), etc. At
the same time, this approach can be directly applied to many
other applications such as speaker change detection, speaker
diarization, and speaker adaption for speech recognition [46],
[47]. Other directions such as language identification, spoof-
ing detection, stress/emotion recognition from speech are also
promising [48]-[50]. The study therefore highlights effective
methods for text-independent speaker recognition, as well as
fundamental observations for future work.
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