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Abstract
Prior works have demonstrated zero-shot text-to-speech by

using a generative language model on audio tokens obtained
via a neural audio codec. It is still challenging, however,
to adapt them to low-latency scenarios. In this paper, we
present LiveSpeech - a fully autoregressive language model-
based approach for zero-shot text-to-speech, enabling low-
latency streaming of the output audio. To allow multiple to-
ken prediction within a single decoding step, we propose (1)
using adaptive codebook loss weights that consider codebook
contribution in each frame and focus on hard instances, and (2)
grouping codebooks and processing groups in parallel. Experi-
ments show our proposed models achieve competitive results to
state-of-the-art baselines in terms of content accuracy, speaker
similarity, audio quality, and inference speed while being suit-
able for low-latency streaming applications.
Index Terms: audio generation, text-to-speech, zero-shot,
streaming

1. Introduction
Zero-shot text-to-speech (TTS) has gained attention in recent
years due to its ability to synthesize speech that is similar to
any voice without speaker-specific model adaptation [1, 2, 3, 4].
Although recent research in zero-shot TTS has made significant
progress in achieving high audio quality and speaker similarity
through the utilization of language models applied to tokenized
audio [1, 2] or diffusion models [4], there remains a challenge in
adapting them to a real-time or low-latency setting. This chal-
lenge arises due to the non-autoregressive nature of some mod-
els or the high inference time per step associated with others.
The development of a low-latency zero-shot TTS system holds
the potential to unlock a diverse range of applications, partic-
ularly in facilitating live communication scenarios, including
speech-to-speech translation, accent conversion, speech simpli-
fication, or disfluency removal.

In streaming applications, autoregressive models offer a
distinct advantage due to their ability to generate speech incre-
mentally, making them well-suited for tasks that require imme-
diate responses. Recent research has demonstrated that zero-
shot TTS can be accomplished by harnessing the capabilities of
language models on discrete tokens obtained from neural audio
codecs [1, 5]. However, due to the high bandwidth nature of
audio, a single audio frame is usually represented by multiple
codes, which may also be sequentially dependent [6] thus need
to be predicted in sequential transformer steps. To speed up the
generation, a delayed generation pattern [3] has been proposed
to shift codes in each frame in order to produce codes from dif-
ferent frames within a single step, while codes from the same
frame are produced in sequential steps. However, the bandwidth

of one decoding step may limit the number of codes that can be
predicted in parallel, since the model must maintain and pro-
cess the information of all codes throughout its layers. While
this can parallelize 4-codebook generation in the music gener-
ation task with a large model size [3], it may not perform well
in the low-latency TTS task for a lower model capacity, and a
higher number of codebooks (e.g., 8 or 16) that are required to
represent a wide range of subtle variations in human speech.

In this work, we propose LiveSpeech - a fully autore-
gressive transformer architecture for the zero-shot TTS task
and demonstrate its competitive performance to existing ap-
proaches, as well as its ability to perform low-latency inference
in a streaming manner. Our contributions can be summarized
as follows: (1) We introduce a loss weighing mechanism to
redistribute the model capacity across codebooks. We weigh
each code based on its contribution to the constructed frame and
whether more important codes in the same frame are accurately
predicted with high confidence. Our model can efficiently scale
the number of codebooks for each generated frame to 16 with-
out additional inference cost, (2) we show that how enhancing
the step capability by modeling groups of codebooks in par-
allel can further improve the performance. While the computa-
tion increases, codes in these groups can be predicted in parallel
without introducing significant inference time.

2. Related Works
Traditional works on speech generation adopt a transformer
architecture to generate downsampled speech frames of mel-
spectrograms [7, 8, 9, 10], which can be decoded to the raw au-
dio by using a vocoder. However, generating mel-spectrogram
is hard - it is susceptible to decoding noise and performs poorly
on zero-shot or noisy condition [11]. Recently, the sequential
and continuous nature of speech has provided inspiration for
leveraging successful techniques employed in text generation,
such as language models, and in image generation, such as dif-
fusion models. Both the language modeling and diffusion ap-
proach have demonstrated their efficiency in generating high-
fidelity audio in a wide variety of audio and speech generation
tasks [5, 12, 13, 1, 3, 14, 15]. When it comes to streaming
applications, autoregressive language model-based approaches
have an advantage as they can generate audio with low latency
by processing data sequentially, while diffusion models have to
rely on successive non-autoregressive queries to reconstruct au-
dio.

To leverage the language model’s capability in the audio do-
main, vector quantization has been used to represent audio sig-
nals as discrete codes. While some works [16, 15, 17] leverage
tokens obtained via self-supervised pretraining, which can be
fused with speaker information during generation, other works
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[1, 3] rely on tokens from an audio codec trained with resid-
ual vector quantization (RVQ) [6, 18, 19], which can be solely
used to synthesize the raw audio. AudioLM [5] proposes us-
ing autoregressive transformers to generate one token per step,
where coarse and fine acoustic tokens are modeled separately.
VALL-E [1] models the first token in each audio frame with an
autoregressive transformer, and sequentially predicts the second
to the last codes for all frames using a shared non-autoregressive
transformer. MusicGen [3] proposes a delayed generation pat-
tern that can parallelize 4-code generation in each step. In
this work, we adopt the delayed generation pattern in Music-
Gen, with proposed techniques to enable high-fidelity and low-
latency speech generation.

3. Background
In this section, we go over some key concepts in audio tokeniza-
tion and how to use them in audio generation.

Audio Compression with Residual Vector Quantization A
pivotal element for applying language models in the audio do-
main is an audio tokenization component, which usually com-
prises an encoder, a quantizer, and a decoder [6, 18, 19, 20].
The encoder transforms the audio into a latent speech repre-
sentation of T time steps z1,z2, ..., zT , which is recursively
quantized by a sequence of quantizers to produce Q codes
ci = [c

(1)
i , c

(2)
i , ..., c

(Q)
i ] ∈ CQ for each zi, where C is the set

of codebook indices. As a result, the first few codes mainly rep-
resent the content of the audio, while the later codes represent
fine-grained details [1].We refer to codes in early codebooks as
high-level, and codes in later codebooks as low-level.

Audio Generation via Discrete Tokens The compression
rate and reconstruction quality of RVQ codes inspire a number
of works to formulate audio generation as a language model-
ing task; however predicting codes sequentially poses a chal-
lenge of high inference time. MusicGen [3] proposes reduc-
ing the context size by predicting Q codes together, which
is made possible by shifting the codebooks so that each step
predicts Q codes, but only one comes from each frame. Let
C′ = [c′1, ..., c

′
T ′ ] be the shifted codes obtained from C, where

T ′ = T + Q − 1 is the length of the shifted code sequence.
We have c′i =

[
c
(1)
i , . . . , c

(Q)

i−(Q−1)

]
, assuming padding values

for invalid code positions. C′ is modeled by the transformer
instead of C. As a result, the i-th audio frame in C is fully gen-
erated at the (i+Q−1)-th step in C′. This provides an inexact
autoregressive decomposition to model the distribution of dis-
crete codes. Although the performance of the delayed pattern
is still behind that of the flatten pattern, it produces reasonable
balance between the audio quality and the inference budget.

The Content Accuracy vs Voice Quality Trade-off With
the delayed generation pattern, the model needs to distribute
its capacity across all codebooks to produce one code from
each of them. With limited model capacity, prioritizing some
codebooks may lead to the poor prediction of other codebooks,
which results in a content accuracy - voice quality trade-off. In
Table 1, we show that training two models that shares the archi-
tecture, one being assigned equal weights to all codebook losses
and the other being assigned higher weights for the high-level
codebooks, does not yield satisfactory scores for both aspects
in either of these models. In the following section, we propose
several approaches to mitigate this issue.

Table 1: Content accuracy (represented by CER, WER) - voice
quality (represented by SS, O-MOS) trade-off when adjusting
the codebook priority. Metric details are provided in Section 5.

Focus on CER (↓) WER (↓) SS (↑) O-MOS (↑)

None 12.4 23.8 58.5 3.66
High-level codes 2.4 4.7 49.4 3.33

4. Our Proposed Model
In this section, we describe our model and two proposed tech-
niques to efficiently predict all codebooks in a decoding step.
For convenience, we use [c1, . . . , cT ] instead of [c′1, . . . , c′T ′ ] to
denote input tokens for each transformer step during training.

4.1. Model Architecture

Our model shares the architecture with a GPT-style autoregres-
sive language model. It consists of a neural audio codec that
encodes raw audio to codes and decodes codes back to raw au-
dio, a speech encoder and a text embedding layer to provides
voice and text condition vectors, respectively, and a transformer
decoder to generate audio tokens. For the speech encoder, we
employ an encoder-decoder transformer, which takes a variable-
length enrollment speech and produces a fixed-length sequence
of features in a non-autoregressive manner. The main trans-
former decoder processes Q codes from Q codebooks in each
time step. The decoder takes a sum of all code embeddings
xt =

∑Q
q=1 Embq

(
c
(q)
t

)
and predicts all codes from a vector

output p(q)
t = Softmax(Projq (ot)), where Embq, Projq are the

embedding and projection layer for the q-th codebook, xt, ot

are the input and output for the transformer step t, p(q)
t is the

softmax probability distribution of the q-th code at the step t.
The input and target codes are shifted for delayed generation,
similar to MusicGen [3]. Figure 1 (left) illustrates the end-to-
end architecture of our model.

4.2. Adaptive Codebook Weights

To address the content accuracy - voice quality tradeoff, we
propose an adaptive codebook weighing technique that enables
the model to redistribute its capacity for each codebook dur-
ing training. Since high-level codes contribute more to the fi-
nal constructed frame and guide the content of the speech, we
want to prioritize them at the early training stage. As the accu-
racy for high-level codebooks improves, we can focus more on
lower-level codes that are harder to predict correctly. We pro-
pose a mechanism to fine-tune the model’s focus down to the
frame level: we assign a weight for each term in the loss based
on how well higher-level codes in the same frame are predicted.
Let p̃(q)t = p

(q)
t

[
c
(q)
t

]
be the softmax probability value for cor-

rectly predicting the code c
(q)
t . The weighted loss is defined

as

L =
1

TQ

Q∑
q=1

T∑
t=1

w
(q)
t LCE

(
p
(q)
t , c

(q)
t

)
, (1)

where w
(1)
t = 1, w(q>1)

t =
∏

q′<q

(
p̃
(q′)
t

)λ

being the weight

associated with the loss of predicting c
(q)
t , λ ≥ 0 is a hyper-

parameter controlling the decay rate as we get to lower level



Figure 1: (Left) Our proposed architecture. Our model consists of a neural audio codec to convert between waveforms and discrete
codes, a speech encoder to infer enrollment embeddings, and a transformer decoder to generate discrete tokens from conditions. (Right)
Transformer decoder with parallel codebook group heads

codebooks. The bar in w indicates that it does not allow the
gradients to backpropagate through. When λ = 0, all code-
book loss terms are given the same weight. When λ > 0, the
codebook weights at each time step t strictly decrease; the de-
creasing rate depends on the probability of predicting correctly
for all previous codes in the same frame. This is applied recur-
sively throughout all the codes predicted in each audio frame,
and applied differently to each audio frame in the target speech.
In general, this loss encourages the model to focus on high-
level codes at the beginning and shifts the focus to lower-level
codes as training progresses. To mitigate the weight vanish-
ing for low-level codes, we also introduce a threshold pmax and
ignore the q-th code if the probability of correctly predicting
the code p̃

(q)
t is greater than pmax. Weights for the remaining

codes in the same frame are scaled such that the largest weight
becomes 1. This allows training to ignore easy predictions.

4.3. Parallel Codebook Group Heads

Since the transformer needs to predict codes in all codebooks
within a single step, we propose enhancing the modeling capac-
ity of each step by grouping Q codes into G groups and predict
codes in each group together in parallel decoding steps with
their own hidden representations. Besides relaxing the number
of codes needed to be predicted from a query, grouping codes
also allows each group to attend to different parts in the mem-
ory, for example, low-level codes may benefit more from codes
generated in recent time steps. Let L be the number of trans-
former layers, we keep M shared layers for all groups of code-
books and use N = L−M layers to process each group inde-
pendently. At the transition layer, we split the layer output ot,M

into G next layer inputs by using group-specific projection lay-
ers: hg

t,M+1 = GProjg(ot,M ), where g is the group index. At

the last layer, we obtain the probability for each code c
(q)
t from

the output of the corresponding group γ(q) to the q-th codebook

as p(q)
t = Softmax

(
Projq

(
o
γ(q)
t,L

))
. Figure 1 (Right) gives an

example of the transformer decoder when M = 2, N = 3,
Q = 4, and G = 2. These group specific layers only slightly
increase the model size, although the inference time and mem-
ory increase similarly to when increasing the batch size by G
times for the last N layers. On capable hardware, this may have
an insignificant impact on the speed due to parallelization.

5. Experiments
5.1. Setup

Model Architecture For audio codec, we use Encodec 24kHz
[18] at 12kbps compression rate and 75fps where each frame is
represented by 16 codes of total 160 bits. Our transformer de-
coder consists of 12 layers, each having 16 heads, with a layer
dimension of 1,536 and a feedforward dimension of 6,144. The
speech encoder has a non-autoregressive transformer architec-
ture of 6 layers, 8 heads, and a hidden and output dimension
of 1,024, which takes continuous speech features from the En-
codec and outputs a sequence of 64 vector features. For models
with parallel codebook group heads, we group 16 codes into 8
groups of two each. The decoder has the same configuration
of 12 transformer layers with the first M = 6 layers process-
ing frame features and the last N = 6 layers processing group
features in parallel. The size of the model without/with group
heads is 581M/615M, including 77M parameters for the speech
encoder that is not used during decoding.
Dataset We pretrain our model on LibriLight [21], a large un-
labelled speech corpus of 60k hours. Since transcripts are not
available, we employ ASR models to derive the transcript of
all audio segments in the dataset. Specifically, we split record-
ings by each speaker into segments of 160 to 200 seconds, and
use Wav2Vec 2.0 Large (LV-60) + Self Training [22] to extract
character-base transcripts. Each audio segment in the batch has
a duration ranging from 0.1 to 10 seconds, which is sampled
such that it start and end with a complete word based on its time-
align grapheme sequence. For better data loading efficiency
during training, audio is only stored and available in the form of
codec codes extracted by Encodec [18]. We use the dev-clean
set of LibriTTS [23] as the validation set and select checkpoints
based on the value of CER on the validation set. Our test set
is derived from the test-clean set of LibriTTS, where we only
keep audio of 1-10s duration and randomly sample an enroll-
ment speech of 3-5s audio within 50s from the target audio.
This results in a test set of 4.4 hours of 3,624 samples.
Training & Inference Our models are trained with a batch
size of 64 for 1M steps or batch size of 16 for around 3M steps
for models with codebook group heads on 4 A100 GPUs. We
select the checkpoint based on a validation set of 500 samples
taken from the dev-clean set of LibriTTS. We do a beam search
to scan for the decoding temperature τsb ∈ [1.0, 1.1, 1.2], the
number of sample-based codes nsb = [1, 2, 3, 4, 8, 16], the



Table 2: Comparison between our models and baselines when using 3s and 5s of enrollment audio. For reference, we also include
results from industrial baselines with access to more data and may be optimized for the inference speed.

CER (↓) WER (↓) PER (↓) SS (↑) O-MOS (↑) S-MOS (↑) RTF (↓) Lat. (↓)
3s 5s 3s 5s 3s 5s 3s 5s 3s 5s 5s 5s 5s

Reference 1.2 2.7 12.3 76.7 3.80 - - -
Reference (16-code, 12 kbps) 1.4 2.9 12.4 71.1 3.72 0.00 - -
Reference (8-code, 6 kbps) 1.6 2.9 12.4 67.8 3.63 -0.03 - -

Industrial Baselines
XTTS-v1 2.2 2.0 6.3 5.9 12.3 12.2 48.2 50.5 3.93 3.93 - - -
XTTS-v2 2.1 2.0 7.0 6.5 12.7 12.4 57.0 60.3 3.81 3.83 - 0.43 0.36
MetaVoice-1B 7.9 6.7 14.0 12.7 19.4 18.8 53.9 56.6 3.60 3.60 - 2.33 -

Baselines
YourTTS [24] 4.8 4.6 8.9 8.8 15.3 15.4 46.4 48.5 3.71 3.72 -0.26 0.06 -
VALL-E (SpeechX ft) [1, 14] 4.0 3.9 6.4 6.0 15.2 14.9 53.0 58.0 3.69 3.70 -0.12 0.87 -

Ours - λ = 0 12.4 12.4 24.0 23.8 23.2 23.1 55.5 58.5 3.63 3.66 -0.19 0.87 0.19
Ours - λ = 0.1 3.5 3.6 6.8 7.0 13.9 14.0 54.4 57.1 3.57 3.57 -0.34 0.87 0.19

+ pmax = 0.5 3.0 3.0 6.1 6.0 13.4 13.3 55.1 57.6 3.59 3.59 -0.14 0.87 0.19
Ours - 8 groups, λ = 0.05 3.7 3.7 7.2 6.9 14.4 14.1 56.8 59.5 3.66 3.66 -0.04 0.96 0.20

+ DeepFilterNet [25] 3.8 3.5 7.2 6.8 14.2 14.1 56.3 58.9 3.71 3.71 +0.01 0.97 0.21

top-k sampling’s parameter k ∈ [10, 15, 20] for each code-
book, and choose the best hyperparameters based on the value
of (SS − CER) on a validation set of 40 samples. For adap-
tive codebook weights, we report results with λ = 0.1, with
and without the probability threshold pmax = 0.5. For mod-
els with parallel codebook group heads, we report results with
λ = 0.05. We also include results when using an enhancer [25]
on the generated speech.
Objective Evaluation We evaluate output audios in terms of
(1) transcript error rates (TER), (2) speaker similarity scores
(SS), and (3) objective perceptual speech quality score P.808
(O-MOS) [26]. For (1), we report character error rate (CER)1,
phoneme error rate (PER)2, and word error rate (WER)3. For
(2), we report speaker similarity scores by computing the cosine
similarity between speaker embeddings obtained from ECAPA-
TDNN model4. We only compute scores over samples where
the reference audio is longer than 3s, and against the full-length
utterance where the enrollment speech is extracted from. All
clips are sampled to 16kHz for evaluation. We also simulate
real-time inference and measure the speed in terms of the real-
time factor (RTF) and the latency (Lat) on 1 NVIDIA RTX
6000 Ada Generation GPU. Our latency excludes the time for
the computation of the speaker condition, which can be cached
for the same speaker. We do not report the latency for non-
streaming models, in which cases the latency depends on the
generated audio duration.
Subjective Evaluation We conduct subjective evaluation and
report the relative Mean Opinion Score (S-MOS) on uniformly
sampled 148 utterances (around 11 mins in total) from the test
set. Each subject is asked to rate the quality of the audio on a
scale of 1-5. Each audio is evaluated by 7 subjects.
Baselines We compare our models with YourTTS [24] (87M)
and VALL-E [1] (488M) using pretrained checkpoints. The

1hf.co/facebook/wav2vec2-base-960h [22]
2hf.co/facebook/wav2vec2-xlsr-53-espeak-cv-ft [27]
3hf.co/hubert-large-ls960-ft [28]
4hf.co/speechbrain/spkrec-ecapa-voxceleb [29, 30]

VALL-E checkpoint is taken from the SpeechX [14], which
is reported with better performance than the original VALL-
E through multitask finetuning. We also include the results
of industrial baselines such as XTTS-v25 and MetaVoice-1B6,
whose training details and datasets are not published.

5.2. Results

Speech Quality Table 2 compares our models to other base-
lines. Our TTS adapted MusicGen model (λ = 0) performs
well on the SS metric; however CER/WER/PER (or TER)
scores are noticeably high. A large improvement in TER scores
is achieved when using adaptive codebook weights; however,
SS and MOS scores are also affected. Our model with pmax =
0.5 or 8 codebook groups further improves these scores to be
better than or comparable to baselines. In terms of subjec-
tive scores, our 8-group model shows better quality than the
baseline systems and comes close to the 6kbps compressed ref-
erence audio, with the special case when using an enhancer
where no drop is observed compared to the 12kbps reference
(upper bound). Samples are available at trungd.github.
io/livespeech.

Speed & Latency Our RTF is comparable to VALL-E’s, de-
spite being fully auto-regressive. The model with 8 groups has
RTF increased only by 0.09s or 10%, showing the efficiency
of parallelization. Our model operates with a delay of 200ms,
making it suitable for low-latency applications.

6. Conclusion
We present LiveSpeech, a fully autoregressive zero-shot text-to-
speech model that enables live streaming of output audio. The
proposed techniques, including adaptive codebook loss weights
and parallel processing of codebook groups, show competitive
performance and successfully address the challenges of existing
systems in a real-time or low-latency setting.

5huggingface.co/coqui/XTTS-v2
6huggingface.co/metavoiceio/metavoice-1B-v0.1
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A. Appendix
A.1. Background

A.1.1. Audio Compression with Residual Vector Quantization

A pivotal element for applying language models in the audio do-
main is an audio tokenization component. An encoder (usually
a multi-layer convolutional encoder) encodes the audio into a la-
tent speech representation of T time steps z1,z2, ..., zT ∈ Z .
A residual vector quantizer is a sequence of Q quantizers that
recursively quantize the residual from feature vectors zi to
codes ci = [c

(1)
i , c

(2)
i , ..., c

(Q)
i ] ∈ CQ , where C is the set of

codebook indices. For some feature z, this is processed as fol-
lows: r1 = z, c(q) = argmink(||r(q) − d

(q)
k ||), r(q+1) =

r(q) − d
(q)

c(q)
for q ∈ [1, Q], where r(q) is the residual to quan-

tize at the q-th quantizer. When applying this to all time steps
z1,z2, ..., zT , the original signal is encoded as C ∈ CQ×T .

When the discrete audio representation is learned through
a self-reconstruction task, it becomes a neural audio codec that
can be used to compress an audio to a very low bit-rate [6, 18].
The training is usually aided with neural network discriminators
to improve the reconstruction quality.

Figure 2: Transcript error rates (CER, WER) and speaker simi-
larity scores (SSe) of the reference audio decoded by the number
of codebooks used. ‘ref’ represents the original audio. Metrics
are given details in Section 5.1

This provides audio codes that can be generated autoregres-
sively, since in a single frame, each code only depends on pre-
vious codes. As a result, the first few codes mainly represent
the content of the audio, while the later codes represent fine-
grained details. This is shown in Figure 2, where the audio re-
constructed from the first two codes are already able to achieve
around 5% CER, while the speaker similarity continues to ben-
efit from an increasing number of codebooks. We refer to codes
in early codebooks as high-level codes, and codes in later code-
books as low-level codes.

A.1.2. Audio Generation via Discrete Tokens

The sequential dependency of RVQ codes inspires a number of
works to model them hierarchically. Since high-level and low
level codes play different roles in crafting the audio, it is rea-
sonable to separate them in multiple prediction stages. Prior
works on speech generation choose to draw a hard border be-
tween these two groups of codebooks - as in AudioLM [5]
where they separate codebooks of coarse (first 4 codebooks)
and fine (remaining 8 codebooks) acoustic tokens and model
them with two stacked autoregressive transformers, or in VALL-
E [1] where they model the first codebook with an autoregres-
sive transformer, and the rest of them with a non-autoregressive
transformer. In either case, each code is predicted by a query
to the transformer, and codes in a frame have to be generated
sequentially in the streaming mode.

Table 3: Details of audio tokenizers Encodec [18], TF-Codec
[20], DAC [19] with their compression bit rate (BR, kbps) and
their scores on zero-shot TTS metrics. The actual bit rate of
TF-Codec is 6.

Codec BR SR CER PER WER SSe SSs

Reference - - 1.3 12.5 2.5 64.2 94.6

Encodec 6 24 1.7 12.5 2.7 56.2 93.2
Encodec 12 24 1.6 12.4 2.6 59.1 93.8
TF-Codec 8 16 1.5 12.4 2.6 59.4 94.1
DAC 6 16 1.5 12.5 2.7 60.5 94.4
DAC 8 24 1.4 12.4 3.1 61.5 94.4
DAC 16 24 1.4 12.4 2.5 63.2 94.5

Figure 3: Different decoding pattern to generate RVQ codes
with Q = 4 codebooks: VALL-E [1], Flatten [5], and Delayed
[3]. Both VALL-E and Flatten require autoregressive decoding
in both the depth and width dimension, in which VALL-E uses a
non-autoregressive transformer from the second codebook. The
Delayed pattern only needs to perform autoregressive decoding
in one dimension. Moreover, all codes in each autoregressive
step can be predicted in a single transformer query.

By having only one stage, MusicGen [3] reduces the num-
ber of queries to the transformer by Q times. This is possible
by shifting the codebooks so that each step predicts Q codes,
but only one comes from each frame. Let C′ = [c′1, ..., c

′
T ′ ]

be the shifted codes obtained from C, where T ′ = T +Q− 1
is the length of the shifted code sequence, then we have c′i =[
c
(1)
i , . . . , c

(Q)

i−(Q−1)

]
, assuming padding values for invalid code

positions. Each decoding step models p (c′i|c′<i). The i-th au-
dio frame in C is fully generated at the (i+Q−1)-th step. This
provides an inexact autoregressive decomposition to model the
distribution of discrete codes. Although the performance of the
delayed pattern is still behind that of the flatten pattern, it pro-
duces reasonable audio quality under a limited inference bud-
get.

A.2. Token Generation Pattern

Figure 3 compares three decoding patterns. In the delayed pat-
tern that we use, since each query is used to predict Q codes at



Table 4: Decoder and Enhancer ablation results for 5s enrollment audio. Encodec is the vanilla Encodec decoder [18]. Enhancer is
DeepFilterNet3 [25]. Multi-Band Diffusion (MBD) [31]

Encodec Encodec + Enhancer MBD MBD + Enhancer
CER SS O-MOS CER SS O-MOS CER SS O-MOS CER SS O-MOS

Reference 1.2 64.4 3.60 1.5 63.8 3.65 1.61 60.1 3.68 1.5 59.3 3.80
MusicGen (Adapted∗) [3] 11.5 57.2 3.69 11.7 56.6 3.74 12.7 50.0 3.60 12.9 48.9 3.82
Ours - λ = 0.1 3.2 55.7 3.58 3.6 54.8 3.67 4.8 50.5 3.57 4.4 49.2 3.77
Ours - λ = 0.1, pmax = 0.5 3.8 56.5 3.57 3.9 55.5 3.67 4.4 50.4 3.59 4.4 49.3 3.80

the same time, the number of transformer steps is Q times lower
than other patterns.

A.3. Content Accuracy - Voice Quality Trade-off

We train a model that prioritizes high-level codebooks by as-
signing higher weights to high-level codebook losses. Particu-
larly, we initialize weights for the first 4 codebooks as 16, 8, 4,
2, and all other codebooks as 1. We apply exponential decay to
these weights such that they converge to 1 at the end of train-
ing. Compared to the model without codebook loss weights,
this model achieves a significantly better CER at the expense of
the SS score (Table 1).

A.4. Decoding and Enhancement

We explored utilizing a multi-band diffusion decoder (MBD)
[31] as a substitute for the Encodec decoder [18] in order to
improve audio quality. Our observations indicated that while
MBD alters the speaker characteristics, resulting in a decrease
in the SS score, it simultaneously improves the O-MOS score
[32], see Table 4. In addition, MetaVoice’s findings revealed
the presence of background artifacts in the decoded waveform,
which prompted them to examine the application of an en-
hancer, such as DeepFilterNet [25], to the generated waveform
with the aim of removing artifacts introduced by MBD, there-
fore refining audio quality. We report scores when using the
enhancer for both the Encodec and the MBD codec decoder in
Table 4. A uniformly sampled subset of 148 utterances are used
to report these scores.
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