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ABSTRACT
Masked Autoencoders (MAEs) learn rich low-level represen-
tations from unlabeled data but require substantial labeled
data to effectively adapt to downstream tasks. Conversely,
Instance Discrimination (ID) emphasizes high-level seman-
tics, offering a potential solution to alleviate annotation re-
quirements in MAEs. Although combining these two ap-
proaches can address downstream tasks with limited labeled
data, naively integrating ID into MAEs leads to extended
training times and high computational costs. To address
this challenge, we introduce uaMix-MAE, an efficient ID
tuning strategy that leverages unsupervised audio mixtures.
Utilizing contrastive tuning, uaMix-MAE aligns the repre-
sentations of pretrained MAEs, thereby facilitating effective
adaptation to task-specific semantics. To optimize the model
with small amounts of unlabeled data, we propose an audio
mixing technique that manipulates audio samples in both
input and virtual label spaces. Experiments in low/few-shot
settings demonstrate that uaMix-MAE achieves 4 − 6% ac-
curacy improvements over various benchmarks when tuned
with limited unlabeled data, such as AudioSet-20K. Code is
available at https://github.com/PLAN-Lab/uamix-MAE

Index Terms— Masked audio models, Contrastive tun-
ing, Few-shot learning, Masked autoencoders

1. INTRODUCTION

Self-supervised learning has attracted significant attention
for its ability to learn meaningful representations from vast
amounts of unlabeled data, mitigating the need for costly
annotations. Besides significant advancements in computer
vision [1, 2, 3] and natural language processing [4, 5, 6], self-
supervised learning has also recently demonstrated potential
for various speech and audio understanding tasks [7, 8, 9,
10, 11, 12]. Two highly effective self-supervised techniques
in speech and audio understanding are Masked Audio Mod-
eling (MAM) [7, 8, 9, 13] exemplified by methods such as
MAE [7], and Instance Discrimination (ID) [10, 11, 12, 14].

MAE [3] employs a pre-training task where audio inputs
are partitioned into non-overlapping patches, and a subset of
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these patches is masked and reconstructed using Transformer
architectures such as ViT [15]. Training objectives include
patch reconstruction loss [3, 13] and discrete label predic-
tion [8]. However, MAE representations often lack semantic
alignment (i.e., alignment of representations to capture intra-
class similarities) as the reconstruction loss predominantly
focuses on low-level time-frequency features while overlook-
ing high-level semantic features [16, 17, 18]. As a result,
they require significant amounts of labeled data for effective
adaption to downstream tasks. To address this limitation,
BEATs [8] trains an acoustic tokenizer alongside an audio
self-supervised model iteratively, albeit at the cost of in-
creased model complexity and training time, yielding only
marginal improvements in downstream tasks and performing
less optimally in low/few-shot scenarios.

In contrast, ID methods, such as contrastive learning
(CL), semantically align representations of different aug-
mentations of the same audio input [10]. Specifically, CL
brings multiple augmentations of the same example (posi-
tive samples) closer while pushing other examples (negative
samples) farther apart by utilizing an instance classification
pretext strategy [2]. In the image domain, Lehner et al.
[19] proposes to combine CL with Masked Image Modeling
(MIM) to extract object-centric representations by disre-
garding background details, thereby alleviating substantial
annotation requirements in downstream tasks. However, this
approach requires large-scale unlabeled datasets [20], result-
ing in increased training time and computational overhead.
Thus, combining ID and MAE to tackle downstream tasks
with constrained labeled data remains challenging.
Our contributions. In this work, we introduce uaMix-MAE,
an efficient ID contrastive tuning strategy with unsupervised
audio Mixtures for pretrained MAEs, which enables effective
adaptation to downstream tasks, particularly in low/few-shot
settings, while only requiring small amounts of unlabeled data
for MAE model tuning. uaMix-MAE initializes a ViT en-
coder with model weights trained with MAM [7] and tunes
the model, using a contrastive objective, with unsupervised
audio mixtures to semantically align representations of pre-
trained MAEs. Moreover, inspired by [21, 22], we propose
a mixture technique tailored for audio that manipulates both
the input and virtual label spaces simultaneously. This en-
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courages the model to learn more precise and smoother deci-
sion boundaries in the latent feature space while training with
small amounts of unlabeled data. Experimental results on sev-
eral benchmark datasets show that uaMix-MAE outperforms
strong MAM baselines by 4−6% in low/few-shot scenarios.

2. RELATED WORK

Masked Audio Modeling (MAM) has been applied to vari-
ous audio understanding [7, 8, 23, 24], natural language pro-
cessing [6], and computer vision tasks [15]. As masked audio
models, such as AudioMAE [3], MaskSpec [23], MSM-
MAE [24], BEATs [8], and M2D [25], learn low-level fea-
tures by reconstructing individual masked patches during
training, they incorporate irrelevant background information
and are prone to semantic misalignment. Thus, they perform
poorly in downstream tasks with limited labeled data, such as
few-shot learning. This work investigates the integration of
ID and MAEs for improving adaptation to downstream tasks.
Instance Discrimination (ID) methods, unlike MAM, align
representations of different augmentations of an anchor ex-
ample. Existing works utilize data augmentation techniques
such as pitch/time shift [14], time mask/stretch [14], random
crop and mixup [10], fade [14], mixed/white noise [14], and
Gaussian noise [10, 11]. However, none of these methods ap-
ply ID for semantically aligning representations of pretrained
MAEs. To the best of our knowledge, we are the first to pro-
pose an efficient CL strategy with unsupervised audio mix-
tures to semantically align pretrained MAE representations
using only a small amount of unlabeled data. Our work is
akin to recent work in the image domain [22] aiming to re-
duce unlabeled data requirements, and consequently, compu-
tational resources and training time by training Transformers
with ID [19].

3. METHODOLOGY

Given a pretrained MAE encoder fθ and an unlabeled dataset
E={(ei, e+i )}Ni=1, where N is the number of total examples,
ei ∈ RT×F denotes the Filterbanks (fbanks) [26] of an audio
sample i with time T and frequency F , and e+i is a positive
example of anchor ei, constructed through data augmentation
techniques, our objective is to improve downstream task per-
formance with limited labeled data. To achieve this, we can
employ ID methods to leverage unlabeled data for semanti-
cally aligning the representations of fθ in the feature space.
In practice, however, training with abundant unlabeled data
is impractical for resource-constrained environments. There-
fore, devising methods that extract maximal value from un-
labeled data can augment the transferability and generaliza-
tion capabilities of the learned representations while training
with a small amount of unlabeled data. To this end, we intro-
duce uaMix-MAE, which extends fθ by incorporating a con-
trastive head hθ and performs contrastive tuning on hθ and
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Fig. 1. uaMix-MAE overview. Left: T-CutMix contrastive tuning.
Right: Progressive retraining of fθ and hθ . DA: Data Augmentation.

the last layers of fθ. As the last layers capture more abstract
and high-level features, contrastive tuning thus enhances the
model’s ability to utilize high-level semantics for downstream
tasks. Fig. 1 presents the overall architecture of uaMix-MAE.

Contrastive Tuning Objective. In terms of ID, we utilize
the Nearest Neighbour Contrastive Learning (NNCLR) objec-
tive [27], an extension of SimCLR [2] that utilizes a queue Q
for the nearest neighbor lookup of anchor examples. Specif-
ically, given a batch B= {(zi, z+i )}

|B|
i=1, where zi and z+i are

the feature representations of anchor ei and its positive ex-
ample e+i , respectively, and zj denotes an example in B, the
NNCLR loss function LCL(zi, z

+
i ) is defined as follows:

LCL(zi, z
+
i )= − log

exp
(
NN(zi, Q, k) · z+i /τ

)∑
(zj ,z

+
j )∈B exp

(
NN(zi, Q, k) · z+j /τ

) (1)

Here, τ is a temperature hyperparameter and NN(zi, Q, k)
denotes the top-k nearest neighbors of zi. The queue Q is
maintained similarly to MoCo [1]. The use of NNCLR as
the contrastive tuning objective is motivated by its ability to
provide more semantic variations in the positive examples
compared to other methods [1, 2].

Progressive Retraining. For contrastive tuning, we employ
a progressive retraining strategy. Initially, we freeze the pre-
trained MAE encoder fθ and train the head hθ using the
NNCLR objective. We then retrain the second half of fθ
along with the head hθ using NNCLR. Partial retraining of fθ
is motivated by the success of partial finetuning, i.e., tuning
only the last layers [3]. Intuitively, the lower layers of the
encoder are adept at generalization, capturing fundamental
features that apply across various contexts, while retrain-
ing the upper layers enables high-level semantic alignment of
features and invariance to subtle differences among examples.

Unsupervised T-Cutmix. Traditional audio augmenta-
tion methods typically construct a positive example e+i
by manipulating the audio sample ei solely in the input
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Fig. 2. (Top row) When original audio samples ei, ej are passed
through fθ and hθ , the positive pair is close to each other, and the
negative pair lies far in the feature space, resulting in a sharp deci-
sion boundary in the virtual label space. (Bottom row) uaMix-MAE
creates mixed audio samples mij and mji in the input space and
uses a softened distance function in the virtual label space, resulting
in a smoother decision boundary.

space. These techniques include pitch/time shift [14], time
mask/stretch [14], noise [10, 11, 14], random crop and
mixup [10], etc. However, as depicted in Fig. 2, manipu-
lating examples only in the input space results in a sharp
decision boundary and, consequently, necessitating a large
amount of data to learn generalized representations in the
feature space [28, 29]. In contrast, we introduce T-Cutmix,
an unsupervised mixing technique tailored for audio that
manipulates data in both the audio and virtual label space
as illustrated in Fig. 2. Our approach is akin to recent ad-
vances in image-based unsupervised mixing strategies such
as MixUp [28] and 2D-CutMix [29], which combine label
smoothing and self-supervised virtual label space regulariza-
tion [30, 31, 15, 22]. Specifically, we define vi as the virtual
label of ei and e+i , where vi[i] = 1 signifies that e+i is the
positive example of ei and vi[k ̸= i] = 0 indicates that all
other audio samples in the batch B are considered negative
examples in relation to ei (Fig. 2 Virtual Label Space).

uaMix-MAE creates an audio mixture mij and its corre-
sponding smoothed label yij as follows:

mij = M⊙ ei + (1−M)⊙ ej (2)
yij = λvi + (1− λ)vj , (3)

where λ is a mixing coefficient and M ∈ {0, 1}T×F is a bi-
nary mask that determines which regions of an audio sample
ei are replaced with corresponding regions from ej , i.e., how
much information from each sample contributes to the mix-
ture (Audio Space in Fig. 2). To generate M, a bounding
box BB = (st, 0, wt, F ) is sampled, indicating that BB in
ei is replaced with the patch cropped from BB of ej . Here,
wt = T

√
1− λ denoting the length of BB in the time di-

mension. The starting time coordinate st is uniformly sam-
pled as st ∼ Uniform(0, T ). For the starting coordinate and
the length in the frequency dimension of BB, we keep the
values fixed at 0 and F , respectively. Similar to [30, 31], λ
is sampled from a beta distribution B(α, α), where α is a hy-
perparameter controlling the size of BB. M is computed by
filling the bounding box region with 0 and the rest with 1.

Table 1. Dataset details for each evaluation setting. SSL: Self-
supervised training, FT: Finetuning, FS: Few-shot learning

Dataset Purpose # Classes # Samples Audio Length

AudioSet-20K [32] SSL & FT 527 20,550 10s
ESC-50 [33] FT & FS 50 2,000 5s
VoxCeleb1 [34] FT & FS 1,251 153,516 3s - 180s
SCv2 [35] FT & FS 35 105,829 1s
NSynth [36] FS 1,006 305,978 4s
Kaggle18 [37] FS 41 11,073 0.3s - 30s

Finally, the loss function for audio mixture mij is defined as

L(zij , yij)= −
∑|B|

l=1
yij [l] · LCL(zij , z

+
l ), (4)

where zij is the representation of the mixed example mij ,
yij [l] the l-th element of the smoothed virtual label yij , and
z+l the representation of the positive example in the batch.

4. EXPERIMENTS

We evaluate uaMix-MAE on few-shot learning (FS) and fine-
tuning (FT) downstream tasks across six benchmarks.
Baselines and Datasets. We compare uaMix-MAE with
other self-supervised MAEs trained with MAM. For all base-
lines, we use the publicly available pretrained checkpoints.
The datasets used in the self-supervised training and the
downstream tasks are detailed in Table 1. For finetuning
(FT), we use the AudioMAE train/validation/test splits [7].
Training details. The backbone fθ is a 86M-parameter ViT-
Base architecture. First, we initialize fθ with pretrained Au-
dioMAE encoder weights [7] and train hθ for 40 epochs with
learning rate 10−4, batch size 512, temperature τ =0.15, and
k=1 in top k-NN lookup. Next, we freeze the lower half lay-
ers and train the top half layers by applying a layer-wise learn-
ing rate decay with decay factor 0.65, learning rate 10−4 for
160 epochs, and batch size 128. Other hyperparameters are
adopted from the NNCLR initialization and contrastive tuning
steps in [19]. For few-shot learning, we follow [38], and em-
ploy a nearest-centroid classifier on backbone extracted fea-
tures. We report average accuracy (95% confidence interval)
on 600 randomly sampled few-shot episodes. For fine-tuning
experiments, we follow the AudioMAE setup [7].

4.1. Few-shot Learning

Table 2 presents the 5-way 1-shot (5 classes, each with 1
example) comparison of uaMix-MAE against baselines us-
ing prototypical networks. uaMix-MAE outperforms the best
baseline by 4.90%–7.44% in all datasets except SCv2.

4.2. Few-shot Ablation Studies

Varying N and K. We vary N and K in the N-way K-shot
experiments, where N is the class number, and K the number



Table 2. 5-way 1-shot performance using prototypical networks.
Best performance is in bold. #TP refers to # of trainable parameters.
Method #TP ESC-50 VoxCe1eb1 NSynth SCv2 Kaggle18

MAE-AST [9] 99M 49.3±0.9 25.6±0.5 48.7±0.9 26.6±0.5 38.4±0.8
MaskSpec [23] 86M 43.0±0.7 - - 21.1±0.4 -
BEATs [8] 90M 48.6±0.8 25.9±0.5 68.8±0.9 26.9±0.5 35.0±0.8
M2D [25] 86M 53.3±0.9 28.4±0.6 43.8±0.9 30.1±0.5 37.8±0.8
AudioMAE [7] 86M 61.1±0.9 28.9±0.5 70.6±0.9 30.4±0.5 41.3±0.8

uaMix-MAE 50M 66.3±0.9 30.3±0.5 75.9±0.9 29.6±0.5 43.6±0.8

Table 3. 5-way 1-shot performance comparison among uaMix-
MAE variants: No Mixing, MixUp + LS. Best performance in bold.

Method ESC-50 VoxCeleb1 NSynth SCv2 Kaggle18

No Mixing 48.7±0.8 23.8±0.4 73.2±0.9 29.9±0.5 37.2±0.8
MixUp + LS 62.6±0.9 29.1±0.5 73.9±0.9 29.6±0.5 41.8±0.8

uaMix-MAE 66.3±0.9 30.3±0.5 75.9±0.9 29.6±0.5 43.6±1.8
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Fig. 3. N-way k-shot performance comparison on VoxCeleb1.
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Fig. 4. Few-shot performance comparison on Voxceleb1 among
uaMix-MAE variants: No Mixing and MixUp + LS.

of examples per class. Fig. 3 shows uaMix-MAE consistently
outperforms baselines across different values of N and K.
T-CutMix Importance. We perform an ablation study con-
sidering the following variations: 1) No Mixing i.e., employ-
ing no unsupervised mixing in CL, and 2) MixUp + LS i.e.,
utilizing MixUp with label smoothing for unsupervised mix-
ing. Results in Table 3 and Fig. 4 show substantial improve-
ments compared to both variants across all scenarios.
TF-CutMix. To illustrate the impact of applying CutMix ex-
clusively in the time dimension, we conduct an ablation study
introducing a variation, termed uaMix-MAE-TF-CutMix, that
employs CutMix in both time (T) and frequency (F) dimen-
sions. As depicted in Fig. 5, uaMix-MAE with T-CutMix con-
sistently outperforms uaMix-MAE with TF-CutMix.

4.3. Fine-tuning

Table 4 presents a fine-tuning comparison with uaMix-MAE
demonstrating comparable results w.r.t. other baselines across

Table 4. Fine-tuning performance on audio and speech classifica-
tion tasks. Best performance in bold.

Method #TP AudioSet-20k ESC-50 VoxCeleb1 SCv2

BEATs [8] 90M 36.0 94.0 - 98.3
MAE-AST [9] 99M 30.6 90.0 63.3 97.9
MaskedSpec [23] 86M 32.3 89.6 - 97.7
AudioMAE [7] 86M 36.7 94.0 93.5 97.9

uaMix-MAE 86M 37.0 94.1 93.6 98.0
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Fig. 5. Few-shot performance comparison between uaMix-MAE
and uaMix-MAE-TF-CutMix on VoxCeleb1.

AudioMAE uaMix-MAE

Fig. 6. t-SNE visualization of AudioMAE (left) and uaMix-MAE
(right) features for eight ESC-50 classes.

all datasets. Table 2 and 4 indicate that uaMix-MAE achieves
better performance in few-shot learning, i.e., demonstrating
superior generalization in the feature space while maintaining
competitive results in fine-tuning.

4.4. Qualitative Analysis

We compare the learned feature representations of the Au-
dioMAE encoder and uaMix-MAE. The t-SNE visualiza-
tion [39] for eight ESC-50 classes (Fig. 6) reveals that uaMix-
MAE exhibits better intra-class clustering compared to Au-
dioMAE. Specifically, uaMix-MAE representations form
distinct and well-separated clusters for classes ‘see waves’,
‘wind’, ‘siren’, and ‘rain’ while the AudioMAE representa-
tions for these classes overlap with other classes.

5. CONCLUSION

In this paper, we introduce uaMix-MAE, a contrastive tuning
strategy employing unsupervised audio mixtures. To adapt
to downstream tasks with limited labeled data, uaMix-MAE
tunes a pretrained MAE encoder with a small amount of un-
labeled data by mixing examples in both input and virtual la-
bel spaces. Experiments in few-shot settings demonstrate that
uaMix-MAE outperforms existing masked audio models.
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