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Abstract. We compare two approaches to image reconstruction in computed tomography (CT) which
incorporate penalty functions to improve image quality in the presence of noisy data. The first approach
adapts a previously proposed hybrid method for solving a regularized least squares problem, which
simultaneously computes the regularization parameter and the corresponding solution. The second ap-
proach is based on the superiorization methodology, wherein the solution is perturbed between iterations
of a feasibility-seeking algorithm to minimize a secondary objective. Numerical experiments indicate
that while both approaches are able to significantly improve image quality, the heuristic applied to se-
lect the regularization parameter in the hybrid method does not generalize well to the CT reconstruction
problem. The superiorization methodology is more effective, provided that a suitable stopping criterion
can be determined.

Keywords. Image reconstruction; Regularization; Spectral projected gradient; Superiorization; Tomog-
raphy.

1. INTRODUCTION

Computed tomography (CT) is a medical imaging modality in which X-ray measurements
gathered from a number of views around the patient are used to reconstruct an image of the
patient anatomy. Mathematically, the measurements are modeled as line integrals through an
attenuation function that represents the distribution of body tissue; the set of all such line inte-
grals represent the X-ray transform of the function. Techniques for reconstructing a CT image
fall into two categories: analytical methods, which are based on directly inverting the X-ray
transform, and iterative methods, which begin with an initial image estimate that is iteratively
improved according to some optimization criteria. Analytical methods have the advantage of
being computationally much less expensive than iterative methods; however, iterative methods
offer more flexibility to accurately model the physics of CT acquisition, and to incorporate prior
information about the image to be reconstructed [2].

In iterative methods, the image reconstruction problem is most often modeled as a large
system of linear equations, Ax = b. As the system is ill-conditioned and the data are noisy, a
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solution to the corresponding least-squares problem,
* . 1
x* = argmin fiso(x), frso(x) :§||Ax—b||% (1.1)
X

is likely to be of poor quality. For this reason, iterative reconstruction methods often incorporate
prior information, in the form of a function that penalizes undesirable image qualities. Classical
choices include the ¢; or ¢; norms, or more commonly in image reconstruction, edge-preserving
penalties such as total variation [35] or the Huber prior [26].

Prior information can be incorporated into the reconstruction algorithm in several ways. One
is to solve a regularized least-squares problem [16, 22]:

X" =argmin frrso(x;A), Treso(A) = frso(x) + 249 (x), (1.2)

where ¢(x) is a penalty function, and A is a parameter controlling the weighting of the least
squares term and the penalty. An important question in this problem is how to determine a
value for the parameter A; a value that is too small may not substantially improve image quality,
while a value that is too large will over-regularize, resulting in an oversmoothed or otherwise
inaccurate reconstruction. The optimal value of A depends on the level of noise in the data, as
well as the nature of the inverse problem.

A second approach is to superiorize [23] an algorithm for solving the least squares problem
(1.1) by perturbing the solution between iterations to reduce the value of ¢. Under certain
conditions (discussed later in the paper), the superiorized version of the algorithm is guaranteed
to eventually produce a solution which is of equivalent quality to the original algorithm with
respect to solving (1.1); the expectation is that this solution should also be superior with respect
to the penalty function. In place of the parameter A in (1.2), superiorization requires specifying
parameters which control the size and number of perturbations introduced between iterations.

In this paper, we compare a regularized and a superiorized approach to the CT image recon-
struction problem. The first approach is based on a hybrid optimization algorithm previously
proposed by Guerrero et al. [19] to solve the regularized problem. This method alternates be-
tween using the spectral projected gradient (SPG) method [3] to solve (1.2) for some choice of
A, then updating the choice of A using simulated annealing [29]. The second method superi-
orizes the simultaneous algebraic reconstruction technique (SART) [1], a well-known iterative
method in CT imaging. In comparing the approaches, we consider the quality of the images
produced, the robustness of the algorithm with respect to different levels of noise, and the com-
putational cost.

2. MATERIALS AND METHODS

We first discuss the fundamentals of the CT imaging problem, followed by a description of
the algorithms used in our study, as well as the the choice of penalty functions.

2.1. CT reconstruction. The idealized physical model for X-ray imaging in two dimensions
is given by Beer’s Law:

I =Ipexp (—/ju(y) dy), (2.1)
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FIGURE 1. 256x256 pixel image of the Shepp-Logan phantom (left) and its
sinogram (right). The sinogram is a sampling of the X-ray transform of the
phantom, with the horizontal axis corresponding to different angles of view, and
vertical axis corresponding to equally spaced line integrals through the phantom
from that angle.

where [y is the initial intensity of the X-ray beam, / is the detected intensity on the other side of
the object, () is the attenuation function which varies with position y € R2, and [ ; represents
an integral along some line j through the object. After rearranging, (2.1) can be written as

[ut)ay=-m, (2.2)
j 0
expressing the line integral in terms of the log-transformed measurement.

In practice, the interaction of X-rays with matter is stochastic, and so the measured intensity is
modeled as a Poisson random variable / with mean /. Since the standard deviation of a Poisson
distribution is equal to the square root of the mean, the signal-to-noise ratio of the measurement
is equal to V1. As a result, measurements are noisier when [ is small, either because the initial
beam intensity (Ip) is low, or if the value of the line integral is large; i.e., the beam passes
through strongly attenuating material. The first case is particularly important in CT imaging, as
one typically wishes to keep the dose to the patient as low as possible in clinical imaging.

The collection of all line integrals through tt over a 180° arc is known as its X-ray transform.
An example of a commonly used numerical phantom and a sampling of its X-ray transform,
or sinogram, are shown in Figure 1. The CT reconstruction problem is to recover the image
of u from its sinogram. Analytical methods, the most fundamental of which is filtered back
projection (FBP) (see, e.g., [31]), are based on a mathematical formula to directly invert the
X-ray transform. Filtered back projection is computationally fast, but unable to incorporate
physical effects beyond the line integral model, or any prior information. Iterative methods [2]
overcome this limitation by first representing the measurements in terms of a linear system of
equations, b = Ax, where b is a vector consisting of the log-transformed measurements, x is the
discretized image of u to be recovered, and A is the system matrix modeling the contribution of
each pixel in x to each measurement in b. This matrix is large, but also sparse, as each entry of
b depends only on pixel intensities along one line through the image. The system of equations
can then be solved in a least-squares or maximum likelihood sense [2].

2.2. Spectral Projected Gradient (SPG). The SPG method was introduced by Birgin et al.
[3], and it has been widely studied (see [5] and references therein). The SPG solves problems
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of the form:
x* =argmin f(x) subject to x € Q,
X

where Q is a closed convex set in R”, and f is a smooth function. The method is attractive
for its simplicity. It overcomes the traditional slowness of the gradient method by incorpo-
rating a spectral step length and a nonmonotone globalization strategy. Also, the method is
very efficient for solving large-scale convex constrained problems in which projections onto €2
are easy to compute. Since its appearance, the SPG method has been useful for solving real
applications in different areas, including optics, compressive sensing, geophysics, and image
restoration, among others [5]. However, to our knowledge it has not been used to solve CT
image reconstruction problems.

To obtain an optimal point x*, SPG computes a trial point x* along the spectral projected
gradient direction, dy = Pq (x; — 04.8x) — Xk, Where g = V f(x;), Pq is defined as the projection
of x onto Q, and ¢ is the spectral step. The point x™ is tested until it satisfies a globalization
condition, and a new iterate is obtained.

The basic idea to obtain the spectral step length is to regard the matrix (1/0g4)I as an approx-
imation to the Hessian V2 f(x;) and impose a quasi-Newton secant equation

1
—Sk—1 = Yk—1
o Yk—15

where sy = x; —x;_1 and y_1 = Vf(xx) — Vf(xx_1). In general, this equation cannot be sat-

isfied exactly. However, accepting the least-squares solution that minimizes || aiksk_l — V1| %
we obtain the so-called spectral step length:
T
Sk—1" Sk—1
O = ———. (2.3)
Sk—1" Yk—1

By the Mean-Value Theorem of integral calculus, it follows that:

1
Vk—1 = (/0 V2 f (e +fSk—1)df) Sk—1-

Hence, o is the inverse of a Rayleigh quotient relative to the average Hessian matrix

1
/0 V2 f(x1 + st dt,

and so it is bounded between the minimum and the maximum eigenvalue of the average Hessian,
motivating the use of the word spectral.

The spectral step was originally proposed by Barzilai and Borwein [4], and further developed
by Raydan [33, 34]. Equation (2.3) is used to determine oy, provided that for all iterations it is
bounded away from zero on the positive side, and bounded away from infinity. As a safeguard,
we define fixed parameters 0 < Oy < Omax < o and use at each iteration:

. Sk—lTsk—l
Qj = min { Opax, Max in,—————— . 2.4)

Sk—1 Tyk—l
The SPG method is described in Algorithm 1. In every iteration, the method moves along the

spectral projected direction with an initial step length og. To benefit from the use of the spectral
step — which does not, in general, result in decrease in the objective — the method incorporates
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the nonmonotone globalization strategy of Grippo, Lampariello and Lucidi [18], in which the
line search parameter 7 is made to satisfy:

for—td) < max  f(x* D)) =yt T g (2.5)
0<,j<min{k,M}

Here M > 1 is an integer specifying how many iterations to look back upon, and 0 < Yy < 1 is
the sufficient decrease parameter for an Armijo-type criterion. The reduction of the line search
parameter 7 is based on a safeguarded quadratic interpolation (see [6] for more details).

Given: xq, Qy € [Qmin, Onax), maxiter, tol, y € (0,1) and M > 1.

k=0;
pgnorm = 1;
8o =V f(x0);

while (pgnorm > tol) and (k < maxiter) do
die = Po(xx — 04gk) — Xk

pgnorm =|| dy ||

T=1;

Set x4 = x; + tdi;

while f(x7) > max  f(* ) —ytd,T g do
0<j<min{k,M}

\ Reduce 7; x = x; + td;;
end
X+1 = X453
Sk = Xk+1 — Xk>
81 =V (Xut1);

Yk = 8k+1 — 8k
if s;"yx < 0 then
‘ O+1 = Omax;
else
T
. Sk Sk
O+1 = MiIn {amammax { Omin, T } };
Sk” Yk
end
k=k+1
end

return xi, Oy, pgnorm
Algorithm 1: Spectral Projected Gradient algorithm.

2.3. Hybrid method. In the hybrid method of Guerrero et al. [19], simulated annealing (SA) [29]
is used in conjunction with SPG to determine a suitable value of A for the full regularization
problem (1.2). In principle, one would of course like to find the value of A which produces
a regularized solution that is closest to the true solution; for example, in terms of the relative
error,

RelErr(x) = ||x — X¢ruell2 / ||Xtruell2- (2.6)
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The relative error cannot be used to select A, however, when the true solution x;,,, is not known.
Thus one needs to select A based on some other criterion. In some applications, methods such as
the L-curve criterion, discrepancy principle, or generalized cross validation can be used [16, 22];
for example, if the level of noise in the data is known.

In [19], the authors observed that when A is small, the SPG method is typically unable to
converge, in the sense that the norm of the projected gradient direction (pgnorm) decreases
very slowly (if at all) as the algorithm proceeds. This can be attributed to the poor conditioning
of the Hessian matrix for the unregularized problem,

V2fiso =ATA.
When the ¢, norm, ¢, (x) = %||x||%, is used as a regularizer, the Hessian becomes
szRLSQ = ATA + A],

whose condition number is k = (01 + A1) / (0, + A ), where o} and o, are the largest and small-
est eigenvalues of ATA. Since k decreases as A increases, SPG is eventually able to converge
for some critical value of A, as well as all larger values. Empirically, the authors observed
that this critical value occurred close to the value of A that minimized the relative error of the
solution [19].

Based on this observation, the authors proposed a hybrid algorithm (Algorithm 2) in which
the value of A is selected based on monitoring the behaviour of pgnorm over several runs of
SPG. The idea behind the algorithm is that every run of SPG terminates either when pgnorm
reaches rol, or a maximum number of iterations is reached. The latter case indicates that the
convergence criterion was not met, meaning that the problem is still poorly conditioned. The
value of A is then randomly perturbed and SPG is run again. The final solution and step size
from the previous run are used as initialization parameters, in order to reduce the number of
required SPG iterations.

If perturbing A results in a pgnorm that is below fol, or less than the smallest pgnorm that
has been attained so far, then the new value of A is accepted. If not, it may still be accepted
with some probability determined by the Accept function, according to the SA heuristic. The
probability of acceptance in this case is given by

P =exp (—ATE) ,where AE = pgnorm_ — pgnorm;.
1

The variable inside keeps track of how many times (consecutively) the convergence criterion has

been met. As inside increases, the size of the perturbations to A shrink rapidly; additionally, the

rate of reduction of 7 (controlled by the Reduce function) is accelerated (see [19] for details).

The effect of these heuristics is that once a value of A is attained that permits SPG to converge,

the hybrid algorithm converges rapidly to a value of A in its immediate neighbourhood.

2.4. Simultaneous Algebraic Reconstruction Technique (SART). The algebraic reconstruc-
tion technique (ART) for solving a linear system of equations was first proposed by Kacz-
marz [28] and rediscovered several decades later in the context of CT imaging [17]. The ART
iteration projects the current iterate towards the hyperplane defined by a single equation, using

the formula
X1 = Xk — (kaa?, (2.7)
<ai7 ai)
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Given: xq, Qo € [Qmin, Oax), maxiter, tol, A} > 0,0 < & < 1, T} > Tyin

(x1, 011, pgnormy ) = SPG(xo, 0to; A1);

i=1,inside=0;
while 7; > T,,;,, do
0 =rand(—1,1);

A_‘_ — ‘)Li+ 0 (g/loinside) :
(x4, @y, pgnorm.y ) = SPG(x;, o3 A+ );
if pgnorm, < tol then
inside = inside +1 ;
pgnorm; | = pgnorm., Xii1 =Xy, Aiy1 = Ay, Oy = Oy
else if pgnorm. < pgnorm; then
| pgnormiiy = pgnorm., xiy1 =xi, Aix1 = Ay, Oy = Oy ;

else
inside =0 ;
if Accept(pgnorm,.,pgnorm;,T;) then
| pgnormiyy = pgnormuy, Xiy1 = x4, Air1 = Ay, Oy = 0y
else
| pgnormiy 1 = pgnorm;, xi11 = Xi, Aix1 = Ai, Qi1 = 04
end
T;+1 = Reduce(T;);
i=i+1;
end
end
return x;, A;

Algorithm 2: Hybrid SPG algorithm for full regularization problem.

where q; is the ith row of A, b; the ith element of b, (-) denotes the inner product, and @y €
(0,2) is a relaxation parameter. The index, i, cycles sequentially over all rows of A in the
classical version of the algorithm, but can also be chosen in other ways (see, e.g., [36]) to
accelerate convergence. The choice of @, = 1 corresponds to the classical Kaczmarz method in
which iterates are projected onto each hyperplane; taking @, < 1 (underrelaxation) may reduce
sensitivity to noise, while taking @y > 1 (overrelaxation) may accelerate convergence if the data
are consistent [24].

A weakness of ART in the context of CT imaging is its sensitivity to noise in the data [1].
To reduce this sensitivity, one can attempt to satisfy multiple equations simultaneously. The
simultaneous algebraic reconstruction technique (SART) [1] is of the form

Xg+1 = X — (DkDATM (Axk — b) s (2.8)
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where D and M are diagonal matrices, with

m
D:diag{1/2|akj|, jzl...n}
k=1

M:diag{1/2|a,~k|,izl...m}. (2.9)
k=1

The SART algorithm converges to a weighted least squares solution of the linear system [10,
27]. To accelerate convergence, it is also possible to use a block-iterative approach [10], di-
viding measurements into subsets and cycling over the subsets sequentially. In this paper we
only consider the case where all measurements are processed simultaneously. We also use the
constant value @ = 1.9/p(DAT MA) ~ 1.9 for the relaxation parameter (p denotes the spectral
radius of the matrix, which is only slightly less than 1). This is the default choice of constant
@y in the AIRTools software package used for our implementation of SART [20]; more details
on this and other choices of @ can be found in [14].

The computational complexity for one iteration of SART is dominated by the multiplica-
tion by A and A”. In comparison, one iteration of SPG applied to either (1.1) or (1.2) also
requires at least one multiplication by A to compute f75o(xx), and one multiplication by AT
when computing the gradient, V fs0(xx) = AT (Ax; — b). The iteration may also require addi-
tional multiplications by A to evaluate f7go if backtracking is required during the line search.
We found that this was rare in practice, however, since the nonmonotone globalization condi-
tion (2.5) does not require that the function decrease in every iteration. Thus it is reasonable to
consider the cost per iteration of SART and SPG to be roughly equivalent.

2.5. Superiorization Methodology. Superiorization [23] is a recently proposed optimization
heuristic in which the solution generated by an iterative algorithm such as SART is perturbed
between iterations to produce a solution that is superior with respect to the secondary objective,
¢ (x). Specifically, if the update formula for the original iterative method is of the form x;, | =
R(x), the superiorized algorithm takes the form

Xp+1 =R (xk + ﬁkvk) (2.10)

where { B}, is a summable sequence of non-negative real numbers, and {vy },_, is a sequence
of bounded perturbation vectors. Typically, one chooses By = 7, 0 < ¥ < 1, and v, to be a
nonascending direction of ¢ at x, e.g., vi, = =V (xx) /|| VP (xz) |-

The foundation of superiorization is the key result that if the original algorithm is perturba-
tion resilient, then perturbations of the type described above can be introduced in every iteration
without jeopardising convergence of the algorithm. More precisely, if the original algorithm
produces a solution x* such that the residual norm,

lAx* — bl < & 2.11)

for some € > 0 (defined as an €-compatible solution), then the superiorized version of the
algorithm eventually converges to a €-compatible solution x**”, which can be expected to satisfy
O (x™P) < ¢ (x*), if the perturbations are nonascending directions of ¢. SART is known to be
perturbation resilient [7]; some sufficient conditions are discussed in [23]. More details on the

This case is sometimes referred to as SIRT (simultaneous iterative reconstruction technique), see e.g. [2]
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methodology can be found in a recent special edition of Inverse Problems [12] and a continously
updated online bibliography.

A superiorized version of SART is shown in Algorithm 3. The inputs to the algorithm are an
initial guess xp, a stopping tolerance €, and two parameters N and y. The form of the algorithm
is slightly different than described in (2.10), as we allow for a total of N perturbations to be
applied between every iteration of SART, to more effectively reduce the value of @ (x) between
iterations. Mathematically, these are equivalent to a single bounded perturbation, but this per-
turbation cannot be determined a priori. Typically, computing the perturbations is inexpensive
compared to the cost of multiplication by A and AT, so the per-iteration cost of the superiorized
algorithm is not significantly worse that of the basic version.

The parameter y controls the rate at which the perturbation size decreases. The values of y
and N are chosen empirically and may significantly affect the performance of the algorithm [37].
Small values of y cause the size of the perturbations to decrease rapidly, such that the perturba-
tions may have little effect after the first few iterations, while a value of y close to one results
in larger perturbations that may delay convergence to an €-compatible solution. Similarly, a
large value of N will result in more rapid reduction in perturbation size between iterations. The
stopping criterion, &, is also chosen empirically, depending on the application.

2.6. Total variation and Huber penalties. Two commonly-used regularization functions in
image reconstruction are total variation [35] (TV) and the Huber penalty [26]. Both are intended
to reduce noise in the image while preserving edges. For a 2-D image, the isotropic form of the
TV function is

orv (x) = Z \/(x(m+1,n) _x(rmrz))2 + (x(m,nJrl) _x(m,n))2 + 627 (2.12)
()

where the image vector, x, has been reshaped into a 2-D array indexed by m and n. This func-
tion arises from summing the magnitude of a discrete gradient approximation over the entire
image. A noisy image is characterized by many small fluctuations in the gradient approxima-
tion, resulting in a large TV value. The small parameter 0 (which is sometimes omitted) ensures
that the function is differentiable at points x,, ,) where the neighbouring pixels have the same
value. The TV penalty has attracted a great deal of attention recently as it can be represented as
the 1-norm of a sparsifying transform, making it a natural choice in many compressive sensing
applications [32].
The Huber penalty has the form

Oruver)= Y X V(%9 ~Xnm) (2.13)
(m>”) (pv‘Z)eJV(m‘n)

where

v(z) o <o 2.14)
)= . .
2| =5, |2/>6

Here, .4, , is some neighbourhood of the (m,n)th pixel, and 6 is a parameter discriminating
between “small” variations in the image, which are subject to a quadratic penalty, and large
deviations, which are penalized linearly. In this work, we choose .4, , = {(m+1,n),(m,n+1)}

http://math.haifa.ac.il/YAIR/bib-superiorization-censor.html
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Given: xp, Y€ (0,1),N, € >0

{=—1;

k=0;

while ||Ax; —b||, > € do

n=0;

Xien = Xks

while n < N do

Vin ==V (xin) / [[VO(xin)ll2:
while true do

(=041,

ﬁk,n = ’yg;

2= Xin + BenVins

if z€ Qand ¢(z) < ¢(x¢) then

Xken+1 = 25
break;
end
end
n=n+1;
end
Xk+1 = Po (ka\] — C()kDATM [Aka — b] ) ;
k=k+1;
end
return x;

Algorithm 3: Superiorized SART Algorithm.

to take into account the same pixel-wise differences as the TV function (2.12). In the limit as
0 — 0, this gives a function that converges to the anistropic form of the TV [21],

¢(x) = (Z) Xt 1.0) = Xmom) | [Xomns 1) = Xy -

3. NUMERICAL EXPERIMENTS

In this section we compare the two approaches in several numerical experiments. Code for
SPG and the hybrid algorithm were provided to us by the authors of [19]. We used the imple-
mentation of SART from the AIRTools II software package [20], and modified it to implement
the superiorized version.

3.1. Simulation data. We generated two datasets for use in comparing the two approaches.
The first dataset is based on a 256256 pixel image of the Shepp-Logan (SL) phantom (Fig-
ure 1), with a pixel size of 1.2 mm. We then simulated 180 parallel-beam views with a 1°
increment using AIRTools II. Each view consisted of 362 line integrals, resulting in a system

This is equal to [/2N | for N = 256, which ensures that every pixel is intersected by at least one line for every
view.
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thorax abdomen shoulders head

FIGURE 2. 256 x 256 pixel anatomical phantoms.

matrix A of size 65,160 x 65,536. Poisson noise was added to the raw projection data propor-
tional to initial count rates of Iy = 1.0 x 10%, 2.5 x 10*, 5.0 x 10*, and 1.0 x 10’ (see (2.1)), to
assess the effect of noise on the effectiveness of the two approaches.

In the second set of experiments, we simulated data based on four slices of real CT images
obtained from the Cancer Imaging Archive [13], representing slices through the abdomen, tho-
rax, shoulder and head regions. The images were downsampled from 512x512 to 256 x256
pixels, and the same pixel size and number of views were simulated as for the experiments with
the SL phantom. For this set of experiments, only an initial count rate of 5.0 x 10* was simu-
lated; this results in a lower signal to noise ratio for large or dense objects, such as the abdomen
and shoulder images. The anatomical CT images are shown in Figure 2.

3.2. Unpenalized reconstructions. To compare the baseline performance of the two underly-
ing algorithms, we applied both SPG and SART to the reconstruction problem with no penalty
functions. We chose the following stopping criterion for the two algorithms:

e SPG was run for a maximum of 250 function evaluations, or until pgnorm < 1075,
e SART was run until the residual norm, ||Ax; — b||2, decreased by less than 0.25% in one
iteration.

The stopping criterion for SART was chosen heuristically after some numerical experimenta-
tion. It is well known that both ART and SART exhibit semiconvergence [14, 15] when applied
to problems with noisy data; i.e., image quality begins deteriorating after some number of iter-
ations, even as the residual continues to decrease. This behaviour can be analyzed by bounding
the error in the kth iterate as

llxx — x| < |2k — X || + || % — %], (3.1)

where X represents the weighted least-squares solution to the problem Ax = b with noiseless
data b, and x; and X; denote the iterates produced by SART (2.8) with noisy and noiseless data,
respectively. In [14], the authors call the first term on the right of (3.1) the “noise error” and
the second term the “iteration error”, and show that the noise error grows with k, eventually
dwarfing the iteration error.

For this reason, SART is typically stopped “early” after some number of iterations have been
run; in general, the algorithm should be stopped earlier for noisier data. Alternatively, if the
level of noise in the data is known, a stopping criterion based on the residual norm (2.11) can
be applied, e.g., using the discrepancy principle [30]. We elected to use a rule based on the
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FIGURE 3. Results of SPG and SART reconstructions with no penalty. First
row: Shepp-Logan phantom with Iy = 2.5 x 10*; second row: abdomen phan-
tom. Semilog plots show the relative error and residual norm as a function of the
number of iterations.

relative change in the residual, so that it could be applied consistently across all our test cases
with varying noise levels.

The images produced by each algorithm for two test cases, as well as plots of the convergence
behaviour, are shown in Figure 3. The nonmonotic convergence behaviour of SPG is apparent,
as well as the semiconvergence phenomenon in both algorithms. The relative error (2.6), of
the best solution found by each algorithm was roughly the same, but SPG converges more
rapidly and exhibits semiconvergence at earlier iterations. This behaviour was typical of all
eight experiments, as indicated in Table 1.

In every case, SPG terminated after 250 function evaluations; as discussed in [19], the ill-
conditioning of the unregularized problem makes it impossible for the stopping criterion based
on pgnorm to be attained. Table 1 indicates that the stopping criterion chosen for SART, on the
other hand, terminated the algorithm prematurely (while the error was still decreasing) in all but
one case.

3.3. SPG with fixed regularization parameter. Before applying the hybrid algorithm to the
reconstruction problem, we first ran experiments to determine the optimal value of the reg-
ularization parameter A for each test case. Specifically, we applied SPG to the regularized
problem (1.2) for values of A between 0 and 1, in increments of 0.02. We used both @7y (2.12)
and Qg ,per (2.13) as regularization functions, with 6 = 10~° for Ory and 6 = 103 for Oruber-
For each value of A, SPG was run for a maximum of 1000 iterations, or until pgnorm < 10-°.
We then computed the relative error to determine the optimal value of A. While this is not
possible to do in practice when the true image is not known, knowing the optimal value of A for
each test case allowed us to assess the performance of the hybrid algorithm in the subsequent
section.
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TABLE 1. Results of SPG and SART reconstructions with no penalty. Relative
error, number of iterations, and residual norm value (€) are shown for each algo-
rithm; first when the stopping criterion was reached (end) and then at the optimal
error attained (opt). Dashed lines indicate that the two values are the same, i.e.
the algorithm terminated while the error was still decreasing.

Experiment SPG (end) SPG (opt) SART (end) SART (opt)
Relerr  Its € Relerr Its € Relerr Its € Relerr Its €

SL 1.0e4 0.300 243 164 0.175 50 202 0.170 123 21.5 - - -
SL 2.5e4 0.165 246 10.6 0.129 90 11.0 0.137 160 13.5 - - -
SL 5.0e4 0.125 242 690 0.104 79 751 0.118 194 9.92 - - -
SL 1.0e5 0.088 243 4.83 0.081 153 5.10 0.101 235 7.28 - - -
Thorax 0.085 248 1.85 0.064 49 255 0.064 180 2.48 - -
Abdomen 0.141 246 572 0.078 26 6.59 0.078 135 5.07 0.072 81 6.29
Shoulders 0.089 250 205 0.068 50 2.66 0.067 173 2.70 - - -
Head 0.071 240 1.17 0.063 119 127 0.072 226 1.61 - - -

TABLE 2. Results of SPG algorithm with fixed regularization parameter A, us-
ing the TV and Huber penalties. Value of A corresponding to the best solution
found, the relative error of that solution, number of iterations required, and resid-
ual are shown.

Experiment TV Huber
A Relerr Its € A Relerr Its €

SL 1.0e4 0.10 0.127 1000 20.6 0.44 0.052 1000 24.6
SL 2.5e4 0.06 0.089 998 124 0.28 0.033 1000 15.1
SL 5.0e4 0.04 0.068 999 857 0.20 0.026 903 10.6
SL 1.0e5 0.02 0.048 998 555 0.12 0017 681 7.29
Thorax 0.02 0.051 1000 272 0.02 0.052 799 2.78
Abdomen  0.06 0.058 1000 6.78 0.10 0.055 733 7.62
Shoulders  0.02 0.056 1000 293 0.04 0.051 600 3.36
Head 0.02 0.070 999 2.12 0.02 0.044 572 1.70

The reconstructed images for two of the eight test cases are shown in Figure 4, along with
plots showing the final relative error and pgnorm as a function of the parameter A. From these
plots, it is apparent that using ¢7y with § = 107 does not allow the algorithm to converge
(based on the size of pgnorm), for any value of A. When the Huber penalty with § = 1073
is used, the algorithm is able to converge to the desired tolerance for some range of A values,
though not for all A larger than some critical value (which is the case when one uses the 2-norm).
We discuss this phenomenon further in Section 4.

The results of all eight test cases are summarized in Table 2. We note that when the Huber
prior was used, in six out of eight cases the optimal value of A was one for which the algorithm
was eventually able to converge, before reaching the maximum number of iterations. For the
Shepp-Logan phantom, the optimal value of A was larger for noisier data, as expected. For the
anatomical phantoms, the optimal value of A tended to be smaller than for the Shepp-Logan
phantom. This is also intuitively sensible, as the anatomical images contain more fine detail
than the Shepp-Logan phantom, making them more sensitive to over-regularization.
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FIGURE 4. Results of SPG reconstructions with fixed regularization parameter
A, using TV and Huber prior as penalty functions. First row: Shepp-Logan
phantom with Iy = 2.5 x 10%; second row: abdomen phantom. Semilog plots
show the final relative error and pgnorm attained by SPG as a function of A.

3.4. Hybrid algorithm. In light of the results of the previous section, we determined that the
TV function with § = 107 could not be used as a regularizer in conjunction with Algorithm 2,
which requires that the convergence criterion based on pgnorm be attained near the optimal
value of A. We therefore considered only the Huber function with § = 1073, As with the
experiments in the previous section, every iteration of SPG was run until pgnorm < 107, up to
a maximum of 1000 iterations; we used the default values of 7} = 40 and T},;, = 10~ from [19]
as the parameters controlling the simulated annealing (SA) iterations.

Algorithm 2 includes a parameter € controlling the size of the perturbation to A between
iterations of SPG. In [19], the authors tested several different different choices of € ranging from
0.0005 to 0.05, and concluded that a larger value of € is preferred when the data are noisier. In
our experiments we compared results using € = 0.05 and € = 0.2. Since the SA component
of the hybrid algorithm introduces a stochastic element to the optimization, we also ran the
algorithm five times for each test dataset, to assess the average performance of the algorithm.

The results of the experiment are shown in Table 3 and Figure 5. The choice of € has a
significant effect on the value of A to which the algorithm converges; with € = 0.2, the final A
values were much larger than with € = 0.05. This corresponded to improved image quality for
the Shepp-Logan phantom and two of the anatomical phantoms, but not the shoulder and head
phantoms. Even with € = 0.2, however, the algorithm tended to underestimate the correct value
of A for the Shepp-Logan phantom experiments. While individual runs of the hybrid algorithm
were able to obtain nearly optimal error in most of the test cases — at least for one of the two
chosen values of € — there was considerable variance in the final values of A attained by the
algorithm across different runs, resulting in inconsistent performance.

3.5. Superiorized reconstructions. The superiorized SART algorithm (Algorithm 3) was run
on each of the eight test problems. In all cases, the algorithm was run until the residual norm
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TABLE 3. Results of hybrid SPG algorithm using Huber penalty with two values
of €. Median values for final value of A found by the algorithm, relative error,
and total number of SPG iterations are shown.

Experiment £=0.05 e=02
A Relerr Its A Relerr Its

SL 1.0e4 0.066 0.127 4352 0.144 0.083 4612
SL 2.5¢4 0.047 0.073 3190 0.128 0.041 2741
SL 5.0e4 0.036  0.050 2572 0.096 0.030 2485
SL 1.0e5 0.020 0.039 2754 0.068 0.020 2125
Lungs 0.021 0.053 2757 0.043 0.053 2912
Abdomen  0.039 0.068 2766 0.136 0.060 2892
Shoulders ~ 0.047 0.052 2441 0.112 0.066 2439

Head 0.035 0.053 2071 0.174 0.114 2437
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FIGURE 5. Box plots of final A values (top) and relative errors (bottom) attained
over five runs of the hybrid algorithm for each test case. Black boxes correspond
to € = 0.05, blue boxes to € = 0.2. Red line indicates median value, box edges
represent 25th and 75th percentiles, whiskers indicate most extreme datapoints.
Optimal values (tabulated in Table 2) are indicated by green crosses.

(€) was less than the value attained by the unsuperiorized SART algorithm (shown in the tenth
column of Table 1). This choice was made to confirm that the superiorized algorithm was
able to attain an € value equal to the basic algorithm in all test cases. Based on numerical
experimentation, we chose N =5 and y = 0.9995 as parameters to the algorithm, as this choice
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TABLE 4. Results of superiorized SART reconstructions with TV and Huber
penalties. Relative error, number of iterations, and residual norm value are
shown for each algorithm when the stopping criterion was reached (end) and
at the optimal error attained (opt). Dashed lines indicate that the optimal error
(to that point) was attained at the same point as the stopping criterion.

Experiment TV (end) TV (opt) Huber (end) Huber (opt)
Relerr Its € Relerr Its £ Relerr Its € Relerr Its £

SL 1.0e4 0.088 688 21.5 0.077 453 233 0.081 1117 21.5 0.053 837 245
SL 2.5¢4 0.053 619 13,5 0.053 559 139 0.043 1133 135 0.034 966 14.8

SL 5.0e4 0.041 583 9.92 - - - 0.029 1162 992 0.027 1075 104
SL 1.0e5 0.033 551 7.28 - - - 0.019 1177 7.28 - - -
Thorax 0.052 1135 248 0.047 837 3.11 0.054 1692 248 0.051 1488 2.94

Abdomen 0.075 1219 5.07 0.048 625 7.71 0.076 1567 5.07 0.053 1157 7.40
Shoulders 0.054 811 2.70 0.050 533 321 0.055 1528 270 0.052 1365 3.09
Head 0.043 847 1.61 - - - 0.046 1630 1.61 - - -

consistently gave the best results in a reasonable number of iterations. The same choices of o
as in the previous section were used for @7y and @gper-

Representative reconstructed images and convergence plots are shown in Figure 6. The most
notable difference caused by the choice of penalty function is in the convergence behaviour. In
particular, when the Huber prior is used as the penalty, the algorithm stagnates after some num-
ber of iterations, making little progress for several hundred iterations. Eventually the algorithm
is able to make further progress and reach an error comparable to (or better than) that obtained
when using TV as the penalty. Some investigation revealed that during those iterations where
the algorithm stagnates, the Huber penalty appears to be oversmoothing the image, possibly
because the perturbations are too large. Once the perturbation size becomes sufficiently small,
the SART iteration is able to make progress once again. We provide an illustration in Figure 7.
After 600 iterations (first image), the phantom is very blurry, and the image quality only begins
to improve once the perturbation size is on the order of 1072 (second image). The optimal
image quality is obtained close to 1200 iterations (third image), after which point the image
quality degrades due to semiconvergence (fourth image).

It appears that this behaviour is more a result of the choice of the small parameter § in @7y
and Qg,per, rather than the functions themselves. Specifically, if the same values of & are used
in each, the performance of the superiorized algorithm is comparable whether ¢7y or @gper
though we obtained slightly better results with @,pe,. Additionally, when taking § = 1073, we
found that reducing the initial perturbation size — that is, taking B , = Boy” for some By < 1in
Algorithm 3 — eliminated the stagnating behaviour and allowed the algorithm to converge more
quickly. This change also resulted in higher relative error overall, however, and so we have only
shown the results with the original formulation of the algorithm.

The results of all eight test cases are summarized in Table 4. Overall, the image quality
obtained using either penalty function (as measured by relative error) is comparable, with some
exceptions. In particular, using @p,s.r With § = 1073 gave better results for the Shepp-Logan
phantom, albeit after many more iterations. Compared to the unpenalized SART reconstructions
(Table 1), the final relative error obtained by the superiorized method was considerably better
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FIGURE 6. Results of superiorized SART reconstructions using TV and Huber
prior as penalty functions. First row: Shepp-Logan phantom with Iy = 2.5 X
10%; second row: abdomen phantom. Semilog plots show the relative error and
residual norm as a function of the number of iterations.

k = 600, err = 8.59e-02, 3 = 2.38e-02 k=900, err = 6.84e-02, 3 = 1.12e-02 k =1200, err = 5.37e-02, § = 5.31e-03 k=1500, err = 7.19e-02, = 2.51e-03

FIGURE 7. Figures showing the solution x; for increasing k values in the ab-
domen phantom experiment, as well as the relative error and perturbation size,
B. Compare with the relative error plot in Figure 6.

in every case, with the exception of the abdomen phantom. We note that for this phantom,
however, the best error obtained by the algorithm (4.8% using TV, 5.3% using Huber) was still
much better than that of unpenalized reconstruction (7.2%); unfortunately, the algorithm did
not terminate until the image quality had been significantly worsened due to semiconvergence,
as shown in Figure 6.

4. DISCUSSION

The results of our numerical experiments provide some useful data in comparing the superi-
orized SART and hybrid SPG algorithms. Broadly, the regularized and superiorized approaches
appear to have the potential to produce solutions of roughly the same quality. In Table 5 we
have aggregated some of the results from the previous section; the table shows the overall low-
est relative error achieved by each approach. This corresponds to the minimum error achieved
by SART, superiorized SART, and SPG across the entire iteration (i.e. not just when the stop-
ping criterion was attained) and the solution corresponding to the optimal value of A for when
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TABLE 5. Comparison of best relative errors achieved by the unpenalized
SART, superiorized SART, unregularized SPG, and regularized SPG algorithms.
Results for the superiorized SART and regularized SPG were obtained using

¢H uber-

Experiment SART Sup. SART  Unreg. SPG Reg. SPG
Relerr Its Relerr Its Relerr Its Relerr Its

SL 1.0e4 0.170 123 0.053 835 0.175 50 0.052 1000
SL 2.5¢4 0.137 160 0.034 966 0.129 90 0.033 1000
SL 5.0e4 0.118 194 0.027 1075 0.104 79 0.026 903
SL 1.0e5 0.101 235 0.019 1176 0.081 153 0.017 681
Thorax 0.064 180 0.051 1474 0.064 49 0.052 799
Abdomen 0.072 81 0.053 1157 0.078 26 0.055 733
Shoulder 0.067 173 0.053 1338 0.068 50 0.051 600
Head 0.072 226 0.046 1630 0.063 119 0.044 572

SPG was applied with a fixed regularization parameter. We can observe that the best relative
error attained by superiorized SART and SPG is virtually the same for all eight test cases. Both
algorithms also substantially improve the image quality compared to the corresponding unpe-
nalized algorithms (SART and SPG applied to (1.1)). For the Shepp-Logan phantom, the error
is reduced drastically (by 65-80%); for the anatomical phantoms, the improvement was smaller
(roughly 20-30%). This is to be expected as the Shepp-Logan phantom is piecewise constant,
making it an ideal case for penalty functions which act on differences between neighbouring
pixels.

The main challenge in applying each approach is determining appropriate parameters to
achieve nearly optimal error. In the case of superiorization (Algorithm 3), the main parame-
ters to determine are Y and N, which control the size and number of perturbations applied in
every iteration, and €, which determines when the algorithm stops. In this work we held the
first two parameters fixed at N =5 and y = 0.9995. While it is possible that our results could be
improved upon with different choices for these two parameters, in practice it appears difficult
to determine optimal values without extensive experimentation. A recent paper [37] suggests
taking 3 < N < 6 and y = 0.75 for a problem in proton computed tomography, but our own
experiments indicated that it was necessary to take ¥ much closer to 1.0 to obtain good results
in our experiments. Values as large as Y = 0.99995 have been used other studies [23].

The choice of parameter € used to define the stopping criterion (2.11) for superiorization is
also challenging. Since the size of the perturbations eventually go to zero (at which point one
is essentially applying SART), the superiorized SART algorithm is also susceptible to semicon-
vergence, as is apparent from the error plots in Figure 6. If the chosen value of € is too large, the
algorithm terminates before the optimal error is attained, while if € is too small, image quality
will begin to degrade due to semiconvergence before the stopping criterion is reached. Our ex-
periments indicate that the best choice of € is problem-specific and may not be straightforward
to determine, even with a consistently applied stopping rule. The rule that we applied — halting
the unsuperiorized algorithm when the change in residual between iterations became relatively
small — caused the superiorized algorithm to halt prematurely in some cases — particularly those

The parameter ¥ is denoted by « in the referenced paper.
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where the data were less noisy — but after the point of optimal error in cases where the data were
noisier. In some of these cases, the error was significantly larger when the algorithm was halted
compared to its optimal value — for instance, from 5.3% to 8.1% for the Shepp-Logan phantom
at the lowest count rate (Table 4).

It should be noted that no claim has been made in the literature that the superiorization
methodology produces a solution that is optimal in any sense; rather, it is true that the superior-
ized version of a perturbation resilient algorithm produces solutions that are equally constraints
compatible, and likely to be superior with respect to the penalty function. This was the case
in every one of our experiments. Whether this results in significantly improved image quality
depends on the choice of ¢ and the other algorithmic parameters. We note that while the supe-
riorized algorithm is eventually able to attain the same value of € as the basic algorithm, it may
take many more iterations to do so, as highlighted in Table 5.

For SPG applied to the regularized problem, the key parameter to be determined is the regu-
larization parameter A. The hybrid algorithm (Algorithm 2) proposes to determine A by using
the value of the pgnorm when the algorithm terminates as a guideline; the smallest value of
A for which the pgnorm attains the specified stopping tolerance is assumed to be close to the
optimal value. Our numerical experiments indicate, however,that this claim not appear to hold,
in general, for the regularized problem (1.2). In Figure 4, for example, the optimal value of A
for the Shepp-Logan phantom with Iy = 2.5 x 10% is 2 = 0.28, but the algorithm converges to a
tolerance of pgnorm < 1079 for a range of A values from 0.04 to 0.20.

In [19] this observation was made specifically for an image restoration problem where A
represented a blurring operation, with ¢(x) = 3||x||3, and Gaussian noise was added to the
blurred image. In our experiments, we have used a different matrix A (corresponding to a CT
system matrix) as well as different regularization functions ¢ (x) and noise model. Even if ¢, (x)
is used as a regularizer, however, we find that the pgnorm is not a reliable indicator of the
optimal value of A for the CT reconstruction problem. In Figure 8 we show the final relative
error and pgnorm attained as a function of A for the four Shepp-Logan phantom experiments,
using ¢ (x). We can see that the optimal value of A varies significantly with noise, but that
the SPG algorithm is first able to converge for roughly the same value, A =~ 0.2, across all
experiments. This makes sense intuitively, because the failure of SPG to converge for small A
depends primarily on the poor conditioning of the Hessian, which is independent of the level of
noise in the data.

The authors of [19] suggest that the parameter € that controls the size of the perturbation
to A in every iteration Algorithm 2 can be increased for noisier data to improve the results.
In our own experiments we did find that setting € = 0.2 provided better results than € = 0.05
(Figure 5, Table 3) in many cases, particularly for noisier data. That said, increasing the value
of € also produces less consistent results, as the variance in value of A to which the algorithm
converges also increases. In effect, tuning the value of the parameter € to improve performance
does not appear to be any easier than determining the value of A empirically, with the additional
drawback that the hybrid method introduces a random component to the algorithm.

A second issue is that the hybrid method does not generalize well to the total variation and
Huber penalty functions considered in this paper. As discussed in Section 2.3, when ¢ (x) is
used as a regularizer, the conditioning of the Hessian V2 frLSO = ATA 4 A1 improves mono-
tonically with A. For a general penalty function ¢ (x), we have V2f = ATA + AV?¢, and thus
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FIGURE 8. Plots of relative error and final pgnorm value for the Shepp-Logan
phantom experiments, using ¢>(x) = 1|x||3. Vertical dashed lines indicate A
value corresponding to optimal error.

the conditioning of the problem depends on the Hessian of ¢ as well. Using the final value
of pgnorm attained by SPG as a proxy for the conditioning of the problem, we can observe in
Figure 4 that the effect of A on the conditioning is much less predictable for the TV and Huber
penalties. For the Huber penalty with § = 1073, SPG is only able to converge for a finite range
of A values, while for the TV penalty with § = 107, it is not able to converge for any value of
A.

As was the case for the stagnating behaviour observed with superiorized algorithm, the issues
of conditioning appear to result from the choice of the parameter O rather than the particular
forms of the Huber and TV functions. In particular, we found that when J is chosen to be small
(e.g. on the order of 107°) in either function, the spectral step oy (2.3) is rapidly driven to zero,
causing the algorithm to cease progressing while the pgnorm is still relatively large. This occurs
as a consequence of the fact that as 0 goes to zero, both the TV and Huber functions approach
nondifferentiability at some points, producing relatively large terms in the denominator of (2.3).
Specifically, nondifferentiability occurs when neighbouring pixel differences are zero, which
is frequently the case for piecewise constant images. The superiorization methodology, on
the other hand, does not require that the penalty function even be differentiable [11] and can
therefore be straightforwardly applied to a wide variety of penalty functions.

Putting aside issues specific to the hybrid algorithm, it is useful to contrast regularization
more generally with superiorization. One potential advantage of regularization is that the
strength of the regularization term does not diminish as the iteration proceeds, unlike the size
of the perturbations in the superiorized method. This means that noise is suppressed in later
iterations as well as early ones, and so the semiconvergence phenomenon that we observed in
our experiments with the superiorized algorithm is not an issue. On the other hand, because
regularization combines the data fidelity and penalty functions into a single objective, there is
no guarantee of achieving a specific level of data fidelity (€) even if the overall objective is being
reduced. Superiorization, on the other hand, provides rigorous guarantees that an £-compatible
solution can be obtained.

Our numerical experiments considered only the case where A is m X n with m ~ n. The
underdetermined case where m < n is also of considerable practical importance in CT imaging,
for example, in the case of so-called sparse-view imaging. This case is studied in a number
of papers on superiorization, e.g. [23, 25]. In the underdetermined case, it can be proven that



COMPARISON OF REGULARIZED AND SUPERIORIZED METHODS 97

the unique solution to the non-negative least squares problem can have at most m — 1 non-
negative entries [8], producing high-frequency oscillations in the resulting solution [9]. This
undesirable behaviour is a property of the problem itself, thus any algorithm that solves the
least-squares problem (e.g. our superiorized SART algorithm) must exhibit such behaviour in
the limit. This phenomenon is separate from the semiconvergence behaviour described in this
paper, but with the same outcome; the stopping criterion for the superiorized algorithm must
be carefully chosen, to avoid the emergence of these oscillations once the perturbation size
becomes small. A regularized approach in which such oscillations are penalized within the
objective function avoids this issue by solving a modified problem; however, in this case the
selection of the regularization strength may again prove challenging.

CONCLUSIONS

In this paper we have compared two approaches to solving the CT reconstruction problem
that incorporate penalty functions to improve image quality. The first method takes the hybrid
SPG algorithm of Guerrero et al. [19], initially proposed for image restoration, and attempts
to adapt it to the CT reconstruction problem by incorporating a different system matrix A and
different regularization functions. Ultimately, we find that the heuristics that were formulated
in developing the hybrid method do not generalize well to the reconstruction problem. The
difficulties arise due to the nonsmooth nature of the penalty functions that are commonly used
in image reconstruction, and possibly due to the different nature of the restoration and recon-
struction problems.

The second method applies the superiorized SART algorithm [23] to the reconstruction prob-
lem. Overall we find that the superiorized method is effective in improving image quality, with
some caveats. The superiorized method is prone to the same semiconvergence phenomenon as
SART, and so a stopping criterion must be chosen carefully to prevent image quality from de-
grading. As well, if the size of the perturbations introduced by the superiorization methodology
are large, the algorithm may require many iterations to achieve the same data fidelity as the
original SART algorithm.

Our experiments indicate that SPG applied to the regularized least squares problem and the
superiorized SART algorithm are both capable of achieving roughly the same improvements in
image quality if the parameters are chosen optimally. For SPG, this corresponds to the regular-
ization parameter A, while for superiorized SART, the parameters N and 7 control perturbation
size, while € determines the stopping criterion. Our experiments indicate that finding optimal
values of these parameters is challenging, and warrants further study.
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