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ABSTRACT 

Under-display camera is of great interest in the display 

industry potentially eliminating the display bezel and 

camera notch/hole in mobile devices. However, display 

pixels cause complex signal modulation in the camera 

aperture which results in light diffraction and signal loss. 

We explored learning-based image restoration 

approaches to achieve high contrast and high modulation-

transfer-function in modern image processing. 

1 INTRODUCTION 

World first under-display camera (UDC) phone was 

released in market by ZTE Axon 20 5G [1]. The selfie 

camera was implemented with a customized low-

resolution and transparent display region centered on the 

camera location. Placing a camera under a display 

conflicts with the needs of high-quality camera imaging 

which conventionally requires a clear aperture to receive 

enough uninterrupted light from the scene. The display 

panel in front of the camera prevents fulfillment of the 

imaging requirements by modulating the incident light due 

to the display’s 3D structure.  

 

The display panel is typically a combination of stacked 

optical layers such as polarizers, pixel structure, and a 

substrate. The pixel structure consists of anode, various 

bandgap management layers like hole injection layer, 

OLED, and cathode. The anode is totally opaque (highly 

reflective): it is typically made of silver and indium tin oxide 

(ITO), and the shape of the anode defines the emitting 

area. The cathode is a thin metal layer that covers the 

whole area and is partially reflective.  

 

BOE [2] is actively developing displays that are 

compatible with the UDC and we have evaluated a 

sample device in Figure 1. In BOE's sample the TFTs are 

not in the optical area, so the TFTs do not affect the UDC 

performance. It is the anode that primarily defines the 

diffraction in these kinds of UDC designs. Image 

degradation mainly arises from contrast reduction 

resulting from diffraction from the pixel pattern, and 

signal attenuation from the stacked layers in the display 

panel.  

 

In Display Week 2020, we reported the introductory 

discussion that covers the full scope of problem definition, 

sample characterization, and learning-based image 

restoration [3]. In this paper, we generalize the DNN-

based solution from the previous case study and suggest 

a more sophisticated approach used in conjunction with 

BOE’s UDC design. While our previous solution was in 

research exploration, current idea could be more 

economic and feasible in practice. The learning-based 

method is updated by an advanced model that compactly 

recovers the corrupted camera image pixels from 

relevant neighboring pixels. The results are evaluated by 

the image metrics of modulation transfer function (MTF) 

and the signal-to-noise ratio (SNR).  

 

2 IMAGE RESTORATION 

Computationally, we de-link the denoising and 

deblurring processes for practical reasons. The main 

reason for wanting to split the deconvolution from the 

DNN is to de-couple the design of the pixels from the 

DNN training process, which can be time consuming and 

expensive. We do not want a heavy retraining of DNN 

model for different display panels. Also, UDC strongly 

suffers from photon insufficiency due to the light 

obscuration in case of low light conditions. UDC’s blur 

kernel mainly depends on the display panel design and 

the blur kernel could be estimated using the known panel 

pattern. Since we know the blur degree in the UDC 

system, we separately take deblurring process that 

mitigates the computational workload in DNN.  

 

 
Fig. 1 UDC display sample 

 
Fig. 2 UDC processing diagram 
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The DNN method first denoises the raw images from 

UDC and turns the deblurring process to deconvolution 

block as shown in Figure 2. In DNN denoising, HRnet-

based deformable convolution was adopted to deal with 

severe noise impact in the UDC image. The HRnet 

repeatedly uses multi-scale fusion in high, medium, and 

low resolutions to recover corrupted pixels inferring from 

the different scales [4]. While Unet loses pixel-wise 

information in encoding and decoding paths [5], the HRnet 

keeps the high-resolution image along the network which 

avoids the pixel-wise information loss. The HRnet uses 

only three scales and the network’s complexity is much 

smaller than the Unet. Right after the HRnet, Deformable 

convolution adaptively finds the most relevant neighboring 

pixels in noisy condition instead of using regular grid [6]. 

Every pixel is effectively learned by the most related pixels 

in neighboring content.  At the end, the high, medium, and 

low-resolution features are merged to result in high-

resolution image with denoising. The proposed model 

takes a 4-channel raw input and returns a 4-channel raw 

output in Figure 3. 

 

We collect 100 bursts of images of static scenes with 

a high-resolution still camera and each burst contains 

100 images. We then take each image in the burst as a 

source image and the average image of each burst as 

the target image, forming a training dataset. To facilitate 

training, we crop both the source and target images into 

256 x 256 patches, since the size of the receptive field is 

smaller than that. We trained the model using Adam 

optimizer [7], with learning rate = 0.01 x 0.5(num of 

iterations)/10000. We set the batch size equals to 16 during 

the training. 

 

The Wiener deconvolution method was used for 

deblurring. With this method the approximate spectral 

noise characteristics of the image are considered and 

 
Fig. 3 DNN denoising structure 

 

 

 
 

Fig. 4 UDC display characteristics of MTF 

 
 

Fig. 5 Diffraction pattern (top) and line plot 

(bottom) 



 

   

the filter weights the degree of denoising according to the 

SNR ratio at a given spatial frequency. Noisier spatial 

frequencies are therefore amplified less than frequencies 

with lower noise.  This approach effects a compromise 

between increasing the resolution and increasing the 

overall noise. 

 

3 EXPERIMENT 

We tested a UDC sample from BOE which is consisted 

of an UDC area with high transmission and a normal 

display area with high pixel density. The microscope 

image already showed the UDC area in Figure 1 and the 

dark pattern with opacity floats in the background of OLED 

materials. In order to achieve about 20% transmission in 

the camera area, the pixel density was decreased by factor 

of 2, resulting in 200 PPI, and transparent tracks were 

used to carry current to the anode. The cathode is still the 

same (partially reflective everywhere over the whole 

display). The spectral transmission of UDC area varies in 

the visible range: the OLED display absorbs more light in 

blue than in red. The transmission characteristics indicate 

the impact of UDC could be severe depending on the 

spectral content and lighting condition of scene. The MTF 

of UDC sample was also measured in experiment (Figure 

4). The UDC’s MTF is slightly worse than the lens-only 

MTF and the degradation is less than 10% at any 

frequency. Figure 5 shows a diffraction pattern through the 

UDC sample using a Gaussian-filtered laser beam. The 

line plot of cross-section confirms most of diffraction 

energy falls into the zeroth order and higher orders are 

relatively low. 

 

Experimental images are compared for through-screen 

corrupted and recovered images in Figure 6. A camera 

module in house was used with 1 micron pixel pitch and f-

number 2. The through-screen corrupted image (left-hand) 

shows the blur due to diffraction and the noise due to low 

transmission from the display panel. The corrupted 

image is slightly yellow because of the spectral response 

of transmission. The recovered image (right-hand) was 

denoised by DNN and deblurred by Wiener 

deconvolution sequentially. The noise was effectively 

suppressed without sacrificing the high frequency 

features. For example, the uniformity of flat features was 

found in ColorChecker. At the same time, the high 

frequency features were also preserved in the texture of 

cushions. Both high SNR and high sharpness were 

achieved by de-coupling the denoising and the 

deblurring.  

 

Figure 7 shows quantitative analysis for the SNR (top) 

 
Fig. 7 Performance analysis: SNR (top), and 

MTF (bottom) 

 
Fig. 6 Image restoration at 66 lux: through-screen corrupted (left-hand), and recovered (right-hand) 



 

   

and MTF (bottom). The SNR was calculated by pixels of 

white color region in ColorChecker. The SNR of recovered 

image was improved by at least 10 dB compared to that of 

corrupted image. The SNR of recovered image was even 

higher than that of no screen image by up to 7 dB. To 

evaluate the image sharpness, we used the slant edge 

method that measures the spatial frequency response as 

an approximation of the MTF [8, 9, 10]. In the test, an ISO 

12233:2000 resolution chart with slant edge features was 

captured through the display sample and the raw image 

was recovered by our image restoration method. In the 

figure, the MTF of recovered image was superior to those 

of corrupted image and no screen image. The MTFs of 

corrupted image and no screen image are noisy because 

they are not denoised at all. 

 

4 CONCLUSIONS 

We demonstrated high-resolution image restoration 

through a BOE’s UDC sample using modern image 

processing methods. The performance of our method was 

analyzed by the standard camera metrics of MTF and SNR 

in sampled cases.  

We still have corner cases for UDC performance in the 

display and camera, respectively, compared to 

conventional display and camera. Currently the pixel 

density of UDC is lower than the normal display and the 

camera suffers from flare and photon deficiency in high 

dynamic range. We continue to find the best solution for 

the two-fold problem that fundamentally trades off the 

display and camera experience. 
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