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Abstract 
Under-display camera is of great interest in the display industry 

potentially eliminating the display bezel and camera notch/hole in 

mobile devices. However, display panels cause complex signal 

modulation in the camera aperture which results in obscuration, 

attenuation and diffraction of the incident light. We propose a 

learning-based image restoration approach to enable a camera to 

operate underneath the display without affecting the display 

contrast and color gamut. 

Author Keywords 
Under-display camera; display panel; organic light-emitting diode 

(OLED); diffraction; point-spread function (PSF); signal-to-noise 

ratio (SNR); peak signal-to-noise ratio (PSNR); modulation 

transfer function (MTF); image restoration; image denoising; 

image deblurring; deconvolution; neural network (NN); 

convolutional neural network (CNN); deep neural network (DNN). 

1. Introduction 
There has long been an interest in locating imaging systems behind 

or underneath displays. Transparent displays based-on LCD and 

OLED have been released, albeit with low resolution and reduced 

display contrast and color gamut [1, 2, 3]. Recently a smartphone 

vendor showed an under-display selfie camera with a customized 

low-resolution and transparent display region centered on the 

camera location [4]. Optical fingerprint sensors under a 

smartphone’s OLED display have been demonstrated but these are 

not capable of high-resolution, color imaging [5]. We present the 

combination of high resolution and color imaging through a high-

quality display.  

Placing a camera under a display conflicts with the needs of high-

quality camera imaging which conventionally requires a clear 

aperture to receive enough uninterrupted light from the scene. The 

display panel in front of the camera prevents fulfillment of the 

imaging requirements by modulating the incident light due to the 

display’s 3D structure. The display panel is typically composed of 

stacked optical layers such as polarizers, pixel structures, and a 

substrate. The pixel structure is purely opaque in metal TFTs whose 

lateral design determines the display’s pixel layout, resolution, 

light attenuation and resulting diffraction for camera imaging. 

Ideally a favorable display structure could be designed; however, 

the technology constraints in the display design limit what can be 

achieved.  Furthermore, the display and camera industries are so 

separated that we were motivated to investigate these imaging 

problems and construct solutions with existing display panels and 

cameras. 

Computationally, image deconvolution is well-established to 

reconstruct the original object from the blurred image [6, 

7]. Deconvolution is the inverse process of convolution and 

recovers the original signal from the point-spread-function (PSF)-

convolved image. The fidelity of the deconvolution process is 

dependent on the space-invariance of the PSF over the image field-

of-view (FOV) and on a low condition number for the inverse of 

the PSF [8]. For strongly non-delta-function-like PSFs such as 

those encountered when imaging through a display, the value of 

condition number can be large. For such PSFs an additional 

denoising step may be essential.  

In contrast, learning-based methods are in essence a complex fitting 

process which is decoupled from the above mathematical 

formalism. The high numerical flexibility in these methods also 

permits that the pre-defined PSF is space-dependent. In this paper, 

we propose a UNet architecture which is a U-shaped neural 

network composed of 3×3 convolutional layers and activation 

functions in the contraction and expansion paths [9]. The U-Net 

model preserves the local feature in the contraction path and 

transfers it to the expansion path. The learnable parameters are 

designed by the model structure and the parameter values are 

determined by data training. 

This paper covers the full scope of problem definition, system 

characterization, and learning-based image restoration. The major 

factors of image degradation are addressed by the 3D structure of 

display panel. The performance of our proposed method is 

characterized by measuring the modulation transfer function 

(MTF) using a slanted-edge test and the signal-to-noise ratio 

(SNR), enabling us to define a system resolution and noise-power 

budget. The system budget clearly shows what we can achieve 

now, and what may be achievable in the future. The learning-based 

method is discussed in terms of the model design and the data 

collection. Finally, we demonstrated the effectiveness of this 

approach by recovering complex test images. 

 

2. System Characteristics 
Two types of display panels are discussed for our case study as 

shown in Figure 1. One is a transparent OLED (tOLED) for a large-

scale 4K display with a pixel pitch of 315 micron; the transmittance 

is 18.5% with 20% open area on a clear substrate. The other is a 

Pentile OLED (pOLED) for mobile device. The Pentile structure is 

evidently more complex than the stripe structure of tOLED. The 

transmittance is only 3% with 23% open area and there is 

attenuation and color shift due to the yellow polyimide substrate.   

 

(a) tOLED           (b) pOLED 

Figure 1. Two samples of display panels: (a) tOLED and (b) 

pOLED 



 

(a) tOLED   (b) pOLED 

Figure 2. Point-spread functions through the two display 
panels: (a) tOLED and (b) pOLED 

 

Image degradation mainly arises from contrast reduction resulting 

from diffraction from the pixel pattern, and signal attenuation from 

the stacked layers in the display panel. Figure 2 shows PSFs 

measured through tOLED and pOLED samples using a HeNe laser 

at 633nm. The rectangular slits of the tOLED screen act like an 

amplitude diffraction grating and produce six strong side lobes only 

a few pixels away from the main lobe. However, the complex 

structure of the pOLED screen diffracts light into many sparse side 

lobes, each of which is relatively weaker than those of the tOLED. 

To evaluate the image degradation and restoration, we used the 

slant edge method that measures the spatial frequency response as 

an approximation of the modulation transfer function [10, 11, 12]. 

In the test, a tilted square pattern is captured through the display 

samples and the raw image is recovered by our image restoration 

method (Figure 3). In the tOLED case, light attenuation occurs due 

to the 18.5% sample transmission and the edge sharpness falls 

strongly owing to the diffracted PSF. In the pOLED case, light 

attenuation and color shift occur due to the 3% transmission and 

yellow polyimide substrate. Although the noise impact is very 

strong in the pOLED, the overall subjective loss in sharpness is not 

very bad compared to that of the tOLED. In both cases, the 

recovered images are subjectively comparable to the original 

image. 

To quantitatively analyze the image data, we used a linear integral 

over the frequency response, although other single-figure image 

quality metrics could be used.  

Linear Integral = ∫ MTF(f) df 

 

(a) tOLED 

 

(b) pOLED 

Figure 3. Slant edge test for (a) tOLED and (b) pOLED: 
original, raw, and recovered images 

 

(a) tOLED  (b) pOLED 

Figure 4. MTFs for (a) tOLED and (b) pOLED 

 

The tOLED test resulted in integrated contrasts for the original 

(0.147), raw (0.043), and recovered (0.133) images. In the same 

manner, the pOLED test resulted in integrated contrasts for the 

original (0.138), raw (0.024), and recovered (0.124) images. The 

image restoration recovered 90% contrasts for both the tOLED and 

pOLED samples in Figure 4.   

 

The system performance is summarized by tabulating the 

characteristics of the original, raw, and recovered images in terms 

of MTF and signal-to-noise ratio (SNR) as shown in Table 1 and 2. 

Note that the Neural Network (NN) gain indicates the image 

improvement produced by the NN in the contexts. The MTF table 

shows the NN gain from the blurry raw image to the sharp recovery. 

The tOLED and pOLED show the NN gains of 3 and 5.29 resulting 

in 90% contrasts in the recovery. The SNR table shows how the 

NN gain recovers the noisy image. The tOLED and pOLED show 

the NN gains of 2 dB and 10 dB resulting in -5.0 dB and -5.2 dB 

SNR loss. The SNR was obtained by using a selected region of 100 

by 200 pixels in the image data. Therefore, the learning-based 

method mainly focused on deblurring to improve the contrast and 

denoising to improve the SNR in the samples. This performance 

trend is determined by the data training dependent with the display 

samples. The MTF performance is fixed by both the panel design 

and the NN gain, however, the SNR performance could be 

improved by increasing the number of measurements.  

 

Table 1. MTF budget for tOLED and pOLED 

Camera under tOLED Camera under pOLED 

 Fraction  Fraction 

Contrast 0.3 Contrast 0.17 

NN gain 3 NN gain 5.29 

Total Loss 0.9 Total Loss 0.9 

 

Table 2. SNR budget for tOLED and pOLED 

Camera under tOLED Camera under pOLED 

 Fraction dB  Fraction dB 

Transmission 0.2 -7.0 Transmission 0.03 -15.2 

NN gain 1.58 2.0 NN gain 10 10.0 

Total Loss 0.32 -5.0 Total Loss 0.3 -5.2 

 



 

Figure 5. Network structure for Unet

3. Learning-based Image Restoration 
The degraded measurement 𝑦̂ is formulated by the convolution of 

the original image 𝑥 and the PSF adding the noise 𝑛. The PSF 

represents the blur kernel resulted from diffraction. The image 

reconstruction 𝑥̂ is modeled by solving the maximum a posteriori 

(MAP) problem composed of the least squares term and the 

regularization term [13].   

𝑥̂ = argmin𝑥

1

2𝜎2
‖𝑦̂ − 𝑦‖2 + 𝜆Φ(𝑥), 

Where 𝜎 is the noise level and Φ(𝑥) is the regularization term. The 

objective function of the L-1 loss ℒ1(Θ) is applied to train the 

model for image reconstruction. The reconstruction ℱ̂(𝕪𝑖  ;  Θ)  is 

estimated by the observation of degraded image 𝕪𝑖 and the 

learnable network parameters Θ, and it is compared to the original 

image 𝕩𝑖 to calculate the loss. The network parameters Θ are 

defined by the model structure and they are learned within a 

training batch of images.   

ℒ1(Θ) =
1

𝑁
∑‖ℱ̂(𝕪𝑖  ;  Θ) − 𝕩𝑖‖

1

𝑁

𝑖=1

, 

Where 𝑁 is the total number of images inside a training batch. A 

UNet structure was used to train the image restoration model which 

splits the encoder into two sub-encoders. One sub-encoder stores 

residual details for the decoding process and the other learns 

contents from encoding the degraded image. The proposed model 

takes a 4-channel raw 16-bit image (y) and returns a RGB 8-bit 

recovery (x) as shown in Figure 5. 

 

A display-camera imaging system was designed to collect a set of 

training dataset degraded by display samples. A 4K LCD display 

showed the training dataset images sequentially. A 12 MP Point-

Grey camera with on-camera image binning producing 2 MP 

images was used to image the display at a distance of 30 cm. The 

camera lens of aperture F/1.8 was focused on the 4K LCD’s 

content. The camera operates at 8 FPS, 125 ms shutter speed, and 

data is output using raw 16-bit image format. The low frame rate 

and long exposure time resulted from the light attenuation via the 

tOLED and pOLED display samples. Furthermore, the camera gain 

was set to 6 dB for tOLED sample and to 25 dB for pOLED to 

compensate the different level of light attenuation. The same 

camera conditions are also used in the tOLED and pOLED 

reconstruction steps. The overall setup for data collection was 

enclosed by a black box to avoid any impact from ambient 

illumination. 

To adjust the monitor gamma, 2.2 Transform is set during the data 

collection. The data captures with and without the display sample 

are well-aligned to each other, typically within one or two pixels; 

however, any small image shifts caused by the display sample are 

adjusted by off-line image registration. Unet requires the power of 

2 training size and only central region of (1024, 2048) pixels is 

cropped from original 2 MP of (1040, 2048) pixels for NN training. 

The collected data image set was split as 200 training, 40 

validation, and 60 testing. This number of images is relatively 

small, but the images are themselves relatively large compared to 

the number of free parameters in the network. Increasing the 

number of images did not result in discernible improvement in 

image quality of the final trained images.  We trained the model 

using the Adam optimizer with a learning rate of 1e-4 and a decay 

factor of 0.5 after 200 epochs. The training stopped at epoch 400 

and the best validation performance was selected. 

 

The results of image restoration trained on the pair-wise data are 

shown in Figure 6. The recovered images are sharper and less noisy 

for both the tOLED and pOLED cases although some of image 

features are lost from the original images. The recovery differently 

improved the sharpness and the noise for the two samples. The 

quantitative results are also reported by the peak signal-to-noise 

ratio (PSNR) which is the difference between the recovered image 

and the original image. In the tOLED the PSNR increased from the 

raw image of 28.8 dB to the recovered image of 36.7 dB by the gain 

of 7.9 dB. In the pOLED the PSNR increased from the raw image 

of 15.4 dB to the recovered image of 30.5 dB by the gain of 15.1 

dB. The tOLED has the higher PSNR value in the recovered images 

but the pOLED has the higher PSNR gain. 

 

4. Conclusion and Discussion 
The performance of an under-display camera is optically defined 

and characterized by MTF and SNR in two types of display 

samples. A pairwise data collection method between training data 

and display-degraded data is implemented using a high-resolution 

LCD display. A learning-based model is designed and trained to 

deal with both diffraction blur and noise in the image degradation. 

However, the inherent low SNR issue is not fully solved by this 

implementation of the learning-based method. In conclusion, we 

hope that this paper motivates the display industry to consider the 

needs of under-display cameras when designing future pixel 

structure. 



 

(a) tOLED      (b) pOLED 

Figure 6. Image restoration for (a) tOLED and (b) pOLED. 
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